A359984
Number of non-crossing antichain covers of {1,...,n} without singletons.
Original entry on oeis.org
1, 0, 1, 5, 40, 372, 3815, 41652, 474980, 5591912, 67454545, 829438722, 10358083621, 131013535954, 1674940506728, 21608978465341, 280976960703472, 3678460005228692, 48446069275681169, 641429612434785006, 8532711384899213885, 113988520118626013998
Offset: 0
The a(3) = 5 antichains:
{{1,2,3}}
{{1,2},{1,3}}
{{1,2},{2,3}}
{{1,3},{2,3}}
{{1,2},{1,3},{2,3}}
The last 4 of these correspond to the graphs of A324169.
-
seq(n)={my(f=O(1)); for(n=2, n, f = 1 + (4*x + x^2)*f^2 - 3*x^2*(1 + x)*f^3); Vec(1 + x^2*f^2 - 3*x^3*f^3) } \\ Andrew Howroyd, Jan 20 2023
A326349
Number of non-nesting, topologically connected simple graphs covering {1..n}.
Original entry on oeis.org
1, 0, 1, 0, 1, 11, 95, 797
Offset: 0
The a(5) = 11 edge-sets:
{13,14,25}
{13,24,25}
{13,24,35}
{14,24,35}
{14,25,35}
{13,14,24,25}
{13,14,24,35}
{13,14,25,35}
{13,24,25,35}
{14,24,25,35}
{13,14,24,25,35}
The binomial transform is the non-covering case
A326293.
Topologically connected, covering simple graphs are
A324327.
Non-crossing, covering simple graphs are
A324169.
-
croXQ[eds_]:=MatchQ[eds,{_,{x_,y_},_,{z_,t_},_}/;x_,{x_,y_},_,{z_,t_},_}/;x0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&!nesXQ[#]&&Length[csm[Union[Subsets[#,{1}],Select[Subsets[#,{2}],croXQ]]]]<=1&]],{n,0,5}]
A326350
Number of non-nesting connected simple graphs with vertices {1..n}.
Original entry on oeis.org
1, 0, 1, 4, 23, 157, 1182
Offset: 0
The inverse binomial transform is the non-covering case
A326351.
Connected simple graphs are
A001349.
Connected simple graphs with no crossing or nesting edges are
A326294.
Simple graphs without crossing or nesting edges are
A326244.
-
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&Length[csm[#]]<=1&&!MatchQ[#,{_,{x_,y_},_,{z_,t_},_}/;x
A324325
Number of non-crossing multiset partitions of a multiset whose multiplicities are the prime indices of n.
Original entry on oeis.org
1, 1, 2, 2, 3, 4, 5, 5, 9, 7, 7, 11, 11, 12, 16, 14, 15, 26, 22, 21, 29, 19, 30, 33, 31, 30, 66, 38, 42, 52, 56, 42, 47, 45, 57, 82, 77, 67, 77, 67, 101, 98, 135, 64, 137, 97, 176, 104, 109, 109, 118, 105, 231, 213, 97, 127, 181, 139, 297, 173, 385, 195, 269
Offset: 1
The a(16) = 14 non-crossing multiset partitions of the multiset {1,2,3,4}:
{{1,2,3,4}}
{{1},{2,3,4}}
{{2},{1,3,4}}
{{3},{1,2,4}}
{{4},{1,2,3}}
{{1,2},{3,4}}
{{1,4},{2,3}}
{{1},{2},{3,4}}
{{1},{3},{2,4}}
{{1},{4},{2,3}}
{{2},{3},{1,4}}
{{2},{4},{1,3}}
{{3},{1,2},{4}}
{{1},{2},{3},{4}}
Missing from this list is {{1,3},{2,4}}.
Cf.
A000108,
A001055,
A001970,
A016098,
A054726,
A099947,
A181821,
A305936,
A306438,
A318284,
A318285.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
nonXQ[stn_]:=!MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x
A326351
Number of non-nesting connected simple graphs on a subset of {1..n}.
Original entry on oeis.org
1, 1, 2, 8, 46, 323, 2565
Offset: 0
The binomial transform is the covering case
A326350.
Connected simple graphs are
A001349.
Connected simple graphs with no crossing or nesting edges are
A326294.
Simple graphs without crossing or nesting edges are
A326244.
-
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Length[csm[#]]<=1&&!MatchQ[#,{_,{x_,y_},_,{z_,t_},_}/;x
Comments