cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 67 results. Next

A355442 a(n) = gcd(A003961(n), A276086(n)), where A003961 is fully multiplicative with a(p) = nextprime(p), and A276086 is primorial base exp-function.

Original entry on oeis.org

1, 3, 1, 9, 1, 5, 1, 3, 5, 3, 1, 5, 1, 3, 5, 9, 1, 25, 1, 3, 5, 3, 1, 5, 1, 3, 125, 9, 1, 7, 1, 3, 1, 3, 7, 5, 1, 3, 5, 63, 1, 5, 1, 3, 175, 3, 1, 5, 1, 21, 5, 9, 1, 125, 7, 3, 5, 3, 1, 7, 1, 3, 1, 9, 7, 5, 1, 3, 5, 21, 1, 25, 1, 3, 245, 9, 1, 5, 1, 21, 125, 3, 1, 5, 7, 3, 5, 9, 1, 7, 1, 3, 1, 3, 7, 5, 1, 3, 5, 441
Offset: 1

Views

Author

Antti Karttunen, Jul 13 2022

Keywords

Crossrefs

Cf. A003961, A020639, A276086, A355001 [smallest prime factor of a(n)], A355456 [= gcd(sigma(n), a(n))], A355692 (Dirichlet inverse), A355820, A355821 (positions of 1's).
Cf. also A322361, A324198, A351459.

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A355442(n) = gcd(A003961(n), A276086(n));

Formula

a(n) = gcd(A003961(n), A276086(n)).

A356302 The least k >= 0 such that n and A276086(n+k) are relatively prime, where A276086 is the primorial base exp-function.

Original entry on oeis.org

0, 0, 0, 3, 0, 0, 0, 0, 0, 3, 20, 0, 0, 0, 0, 15, 0, 0, 0, 0, 10, 3, 0, 0, 0, 5, 0, 3, 0, 0, 0, 0, 0, 3, 0, 175, 0, 0, 0, 3, 20, 0, 168, 0, 0, 15, 0, 0, 0, 161, 10, 3, 0, 0, 0, 5, 154, 3, 0, 0, 0, 0, 0, 147, 0, 0, 0, 0, 0, 3, 140, 0, 0, 0, 0, 15, 0, 2233, 0, 0, 10, 3, 0, 0, 126, 5, 0, 3, 0, 0, 0, 119, 0, 3, 0, 0, 0, 0, 112
Offset: 0

Views

Author

Antti Karttunen, Nov 03 2022

Keywords

Comments

For all nonzero terms, adding a(n) to n in primorial base generates at least one carry. See the formula involving A329041.

Crossrefs

Cf. A324583 (positions of zeros), A324584 (of nonzeros), A356318 (positions where a(n) > 0 and a multiple of n), A356319 (where 0 < a(n) < n).
Cf. A358213, A358214 (conjectured positions of records and their values).
Cf. also A356303, A356304.

Programs

  • PARI
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A356302(n) = { my(k=0); while(gcd(A276086(n+k),n)!=1,k++); (k); };

Formula

a(n) = A356309(n) - n.
If a(n) > 0, then A000035(a(n)) = A000035(n) and A329041(n, a(n)) > 1.

A324584 Numbers n that share a prime factor with A276086(n).

Original entry on oeis.org

3, 9, 10, 15, 20, 21, 25, 27, 33, 35, 39, 40, 42, 45, 49, 50, 51, 55, 56, 57, 63, 69, 70, 75, 77, 80, 81, 84, 85, 87, 91, 93, 98, 99, 100, 105, 110, 111, 112, 115, 117, 119, 123, 126, 129, 130, 133, 135, 140, 141, 145, 147, 153, 154, 159, 160, 161, 165, 168, 170, 171, 175, 177, 182, 183, 189, 190, 195, 196, 200, 201, 203, 205
Offset: 1

Views

Author

Antti Karttunen, Mar 10 2019

Keywords

Comments

Numbers n for which A324198(n) <> 1.

Crossrefs

Cf. A324583 (complement).

Programs

  • PARI
    A276086(n) = { my(i=0,m=1,pr=1,nextpr); while((n>0),i=i+1; nextpr = prime(i)*pr; if((n%nextpr),m*=(prime(i)^((n%nextpr)/pr));n-=(n%nextpr));pr=nextpr); m; };
    A324198(n) = gcd(n,A276086(n));
    for(n=1, oo, if(1!=A324198(n), print1(n, ", ")));

A328386 a(n) = A276086(n) mod n.

Original entry on oeis.org

0, 1, 0, 1, 3, 5, 3, 7, 3, 5, 2, 1, 11, 5, 0, 1, 8, 17, 3, 15, 15, 3, 19, 1, 0, 3, 24, 25, 27, 7, 14, 21, 9, 29, 21, 35, 33, 29, 15, 35, 15, 7, 6, 41, 15, 11, 1, 11, 35, 25, 48, 23, 9, 1, 5, 21, 30, 51, 44, 49, 37, 23, 42, 57, 37, 47, 21, 55, 21, 35, 8, 1, 41, 49, 0, 5, 28, 41, 5, 55, 57, 21, 26, 49, 50, 27, 6, 9, 73, 73, 49
Offset: 1

Views

Author

Antti Karttunen, Oct 15 2019

Keywords

Crossrefs

Cf. A276086, A324198, A328382, A328387 (positions of zeros).

Programs

  • Mathematica
    Block[{b = MixedRadix[Reverse@ Prime@ Range@ 12]}, Array[Mod[Apply[Times, Power @@@ # &@ Transpose@ {Prime@ Range@ Length@ #, Reverse@ #}] &@ IntegerDigits[#, b], #] &, 91]] (* Michael De Vlieger, Oct 15 2019 *)
  • PARI
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A328386(n) = (A276086(n)%n);

Formula

a(n) = A276086(n) mod n.

A351083 a(n) = gcd(n, A003415(A276086(n))), where A003415 is the arithmetic derivative and A276086 is the primorial base exp-function.

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 1, 7, 8, 1, 1, 1, 2, 1, 1, 5, 16, 1, 3, 1, 10, 1, 1, 1, 4, 25, 1, 1, 2, 1, 1, 1, 2, 1, 17, 5, 12, 1, 1, 13, 2, 1, 1, 1, 4, 5, 1, 1, 2, 1, 25, 1, 4, 1, 3, 5, 2, 1, 1, 1, 2, 1, 1, 7, 4, 1, 1, 1, 2, 1, 7, 1, 24, 1, 1, 5, 2, 7, 1, 1, 80, 1, 1, 1, 14, 5, 1, 1, 8, 1, 3, 91, 4, 1, 1, 1, 2, 1, 49, 1, 4
Offset: 0

Views

Author

Antti Karttunen, Feb 03 2022

Keywords

Crossrefs

Cf. A003415, A276086, A324198, A327860, A328572, A351080, A351084, A351087 (fixed points), A354823 (Dirichlet inverse), A373145, A373599 (indices of multiples of 3 in this sequence).
Cf. A166486 (a(n) mod 2, parity of terms, see comment in A327860).
Cf. also A345000.

Programs

  • Mathematica
    Array[Block[{i, m, n = #, p}, m = i = 1; While[n > 0, p = Prime[i]; m *= p^Mod[n, p]; n = Quotient[n, p]; i++]; GCD[#, If[m < 2, 0, m Total[#2/#1 & @@@ FactorInteger[m]]]]] &, 101, 0] (* Michael De Vlieger, Feb 04 2022 *)
  • PARI
    A327860(n) = { my(s=0, m=1, p=2, e); while(n, e = (n%p); m *= (p^e); s += (e/p); n = n\p; p = nextprime(1+p)); (s*m); };
    A351083(n) = gcd(n, A327860(n));

Formula

a(n) = gcd(n, A327860(n)) = gcd(n, A003415(A276086(n))).
a(n) = A373145(A276086(n)). - Antti Karttunen, Jun 18 2024

A351251 Denominator of n / A276086(n).

Original entry on oeis.org

1, 2, 3, 2, 9, 18, 5, 10, 15, 10, 9, 90, 25, 50, 75, 10, 225, 450, 125, 250, 75, 250, 1125, 2250, 625, 50, 1875, 1250, 5625, 11250, 7, 14, 21, 14, 63, 18, 35, 70, 105, 70, 63, 630, 25, 350, 525, 70, 1575, 3150, 875, 250, 105, 1750, 7875, 15750, 4375, 1750, 1875, 8750, 39375, 78750, 49, 98, 147, 14, 441, 882, 245, 490
Offset: 0

Views

Author

Antti Karttunen, Feb 05 2022

Keywords

Crossrefs

Cf. A276086, A324198, A351250 (numerators), A351253.
Cf. also A351231.

Programs

  • Mathematica
    Array[Block[{i, m, n = #, p}, m = i = 1; While[n > 0, p = Prime[i]; m *= p^Mod[n, p]; n = Quotient[n, p]; i++]; Denominator[#/m]] &, 68, 0] (* Michael De Vlieger, Feb 06 2022 *)
  • PARI
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A351251(n) = denominator(n/A276086(n));

Formula

a(n) = A276086(n) / gcd(n,A276086(n)) = A276086(n) / A324198(n).
a(n) = A276086(A351253(n)).

A328387 Numbers k such that A276086(k) is a multiple of k.

Original entry on oeis.org

1, 3, 15, 25, 75, 105, 147, 175, 343, 385, 525, 539, 625, 735, 825, 1029, 1155, 1225, 1331, 1375, 1617, 1815, 2695, 3003, 3025, 3675, 3773, 3993, 4375, 5005, 5145, 5577, 5775, 6655, 6825, 8085, 8125, 8281, 8575, 9075, 9555, 9625, 10725, 11011, 11319, 12675, 12705, 13013, 13377, 15015, 15379, 15925, 17303, 17745, 17787, 17875
Offset: 1

Views

Author

Antti Karttunen, Oct 15 2019

Keywords

Comments

All terms are odd. Of the first 3003 terms, 1709 are multiples of five.

Crossrefs

Indices of 0's in A328386. Indices of 1's in A351250.
Subsequence of A048103 and of A358226.
Cf. also A370114, A358231.

Programs

  • PARI
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    isA328387(n) = (0==(A276086(n)%n));

A364500 a(n) = gcd(n, A005940(n)).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 1, 8, 1, 10, 1, 12, 1, 2, 3, 16, 1, 2, 1, 20, 7, 2, 1, 24, 1, 2, 3, 4, 1, 6, 1, 32, 1, 2, 1, 4, 1, 2, 3, 40, 1, 14, 1, 4, 5, 2, 1, 48, 1, 2, 3, 4, 1, 6, 5, 8, 1, 2, 1, 12, 1, 2, 9, 64, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 15, 4, 11, 6, 1, 80, 1, 2, 1, 28, 5, 2, 3, 8, 1, 10, 7, 4, 1, 2, 5, 96, 1, 2, 33, 4
Offset: 1

Views

Author

Antti Karttunen, Jul 28 2023

Keywords

Crossrefs

Programs

  • Mathematica
    nn = 100; Array[Set[a[#], #] &, 2]; Do[If[EvenQ[n], Set[a[n], 2 a[n/2]], Set[a[n], Times @@ Power @@@ Map[{Prime[PrimePi[#1] + 1], #2} & @@ # &, FactorInteger[a[(n + 1)/2]]]]], {n, 3, nn}]; Array[GCD[a[#], #] &, nn] (* Michael De Vlieger, Jul 28 2023 *)
  • PARI
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
    A364500(n) = gcd(n, A005940(n));
    
  • PARI
    A364500(n) = { my(orgn=n,p=2,rl=0,z=1); n--; while(n, if(!(n%2), p=nextprime(1+p), rl++; if(1==(n%4), z *= p^min(rl,valuation(orgn,p)); rl=0)); n>>=1); (z); };

Formula

a(n) = gcd(n, A364499(n)) = gcd(A005940(n), A364499(n)).
a(n) = n / A364501(n) = A005940(n) / A364502(n).

A379486 Numbers k for which gcd(k,A003961(k))*gcd(sigma(k),A276086(k)) is equal to gcd(k,A276086(k))*gcd(sigma(k),A003961(k)), where A003961(n) is fully multiplicative with a(prime(i)) = prime(i+1), and A276086 is the primorial base exp-function.

Original entry on oeis.org

1, 2, 4, 6, 14, 16, 18, 24, 26, 28, 40, 54, 62, 64, 66, 74, 86, 102, 114, 122, 134, 138, 146, 152, 162, 169, 174, 176, 182, 184, 186, 206, 222, 234, 254, 270, 280, 282, 289, 290, 302, 304, 306, 308, 314, 318, 326, 338, 342, 354, 360, 361, 366, 368, 380, 384, 386, 402, 414, 422, 426, 434, 438, 441, 446, 448, 456, 474, 496
Offset: 1

Views

Author

Antti Karttunen, Jan 01 2025

Keywords

Crossrefs

Cf. A000203, A003961, A276086, A322361, A324198, A324644, A342671, A379485 (characteristic function), A379487, A379488.
Positions of 0's in A379489.
Cf. A379491 (subsequence, terms that are multiperfect numbers, A007691).

Programs

Formula

{Numbers k such that A379487(k) = A379488(k)}.
{Numbers k such that A322361(k)/A324198(k) = A324644(k)/A342671(k)}.

A324577 a(n) = A025487(n) * A324576(n) = A025487(n) * A276086(A025487(n)).

Original entry on oeis.org

2, 6, 36, 30, 120, 300, 3600, 15000, 210, 672, 1260, 42000, 2940, 28224, 88200, 164640, 288120, 4609920, 216090000, 21176820, 564715200, 2310, 11880, 18480, 4435200, 19404000, 66555720, 44370480000, 50820, 1306800, 2845920, 63748608, 5856903360, 328703760, 306790176000, 12298440, 7906140000, 645668100, 33746919360, 15874550866944
Offset: 1

Views

Author

Antti Karttunen, Mar 09 2019

Keywords

Comments

Note that A324198(A025487(n)) = gcd(A025487(n), A324576(n)) = 1 for all n, because each term of A025487 is a product of primorials.

Crossrefs

Cf. also A324582 (a subsequence).

Programs

  • PARI
    A276086(n) = { my(i=0,m=1,pr=1,nextpr); while((n>0),i=i+1; nextpr = prime(i)*pr; if((n%nextpr),m*=(prime(i)^((n%nextpr)/pr));n-=(n%nextpr));pr=nextpr); m; };
    A324577(n) = A025487(n)*A276086(A025487(n));

Formula

a(n) = A025487(n) * A324576(n) = A025487(n) * A276086(A025487(n)).
a(n) = A324580(A025487(n)).
Previous Showing 21-30 of 67 results. Next