cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A325962 a(1) = 1; for n > 1, a(n) is the largest k <= 1+A046666(n) such that n-k and n-(sigma(n)-k) are relatively prime, or -1 if no such nonnegative k exists.

Original entry on oeis.org

1, 1, 0, 3, 0, 5, 0, 7, 7, 9, 0, 11, 0, 13, 10, 15, 0, 17, 0, 19, 18, 21, 0, 23, 21, 25, 24, 27, 0, 29, 0, 31, 28, 33, 30, 35, 0, 37, 36, 39, 0, 41, 0, 43, 40, 45, 0, 47, 43, 49, 44, 51, 0, 53, 50, 55, 54, 57, 0, 59, 0, 61, 60, 63, 60, 65, 0, 67, 64, 69, 0, 71, 0, 73, 72, 75, 70, 77, 0, 79, 79, 81, 0, 83, 80, 85, 82, 87, 0, 89, 82
Offset: 1

Views

Author

Antti Karttunen, May 29 2019

Keywords

Comments

a(n) is equal to A325817(n) only with odd primes and the even terms of A000396. a(n) = -1 only on odd perfect numbers, if such numbers exist. Otherwise a(n) = 2n - A325961(n).

Crossrefs

Programs

  • PARI
    A020639(n) = if(1==n, n, factor(n)[1, 1]);
    A325962(n) = { my(s=sigma(n)); forstep(i=1+n-A020639(n), 0, -1, if(1==gcd(n-i, n-(s-i)), return(i))); (-1); };

Formula

For all n, a(A065091(n)) = 0.

A325970 a(n) is the largest k <= A066503(n) such that k and (2n-sigma(n)) [= A033879(n)] are relatively prime.

Original entry on oeis.org

0, 0, -1, 2, -1, -1, -1, 6, 6, -1, -1, 5, -1, -1, -1, 14, -1, 11, -1, 9, -1, -1, -1, 17, 20, -1, 23, 1, -1, -1, -1, 30, -1, -1, -1, 30, -1, -1, -1, 29, -1, -1, -1, 21, 29, -1, -1, 41, 42, 40, -1, 25, -1, 47, -1, 41, -1, -1, -1, 29, -1, -1, 41, 62, -1, -1, -1, 33, -1, -1, -1, 65, -1, -1, 59, 37, -1, -1, -1, 69, 78
Offset: 1

Views

Author

Antti Karttunen, May 31 2019

Keywords

Comments

a(n) = n-k for the least k >= A007947(n) such that n-k and n-(sigma(n)-k) are relatively prime.

Crossrefs

Programs

  • PARI
    A007947(n) = factorback(factorint(n)[, 1]); \\ From A007947
    A325970(n) = { my(s=sigma(n)); forstep(k=n-A007947(n), -oo, -1, if(1==gcd(k, n+n-sigma(n)), return(k))); };
    \\ Or alternatively:
    A325970(n) = { my(s=sigma(n)); for(i=A007947(n), s, if(1==gcd(n-i, n-(s-i)), return(n-i))); };

Formula

a(n) = n - A325971(n).
For n >= 3, a(A005117(n)) = -1.

A325960 a(n) is k-n for the least k >= n+(A020639(n)-1) such that n-k and n-(sigma(n)-k) are relatively prime, or 0 if no such k <= sigma(n) exists.

Original entry on oeis.org

0, 1, 0, 1, 0, 1, 0, 1, 2, 1, 0, 1, 0, 1, 5, 1, 0, 1, 0, 1, 3, 1, 0, 1, 4, 1, 3, 1, 0, 1, 0, 1, 5, 1, 5, 1, 0, 1, 3, 1, 0, 1, 0, 1, 5, 1, 0, 1, 6, 1, 7, 1, 0, 1, 5, 1, 3, 1, 0, 1, 0, 1, 3, 1, 5, 1, 0, 1, 5, 1, 0, 1, 0, 1, 3, 1, 7, 1, 0, 1, 2, 1, 0, 1, 5, 1, 5, 1, 0, 1, 9, 1, 3, 1, 9, 1, 0, 1, 5, 1, 0, 1, 0, 1, 5
Offset: 1

Views

Author

Antti Karttunen, May 29 2019

Keywords

Comments

By definition, if n is neither an odd prime nor an odd perfect number, then a(n) >= (A020639(n)-1).

Crossrefs

Cf. A006005 (positions of zeros, provided no odd perfect numbers exist).

Programs

  • PARI
    A020639(n) = if(1==n, n, factor(n)[1, 1]);
    A325960(n) = { my(s=sigma(n)); for(i=(-1)+n+A020639(n), s, if(1==gcd(n-i, n-(s-i)), return(i-n))); (0); };

Formula

a(n) = (A325961(n) - A325962(n)) / 2, assuming no odd perfect numbers exist.
a(2n) = 1.

A325971 a(n) is the least k >= A007947(n) such that -n + k and (n-sigma(n))+k are relatively prime.

Original entry on oeis.org

1, 2, 4, 2, 6, 7, 8, 2, 3, 11, 12, 7, 14, 15, 16, 2, 18, 7, 20, 11, 22, 23, 24, 7, 5, 27, 4, 27, 30, 31, 32, 2, 34, 35, 36, 6, 38, 39, 40, 11, 42, 43, 44, 23, 16, 47, 48, 7, 7, 10, 52, 27, 54, 7, 56, 15, 58, 59, 60, 31, 62, 63, 22, 2, 66, 67, 68, 35, 70, 71, 72, 7, 74, 75, 16, 39, 78, 79, 80, 11, 3, 83, 84, 43, 86, 87, 88, 23, 90, 31
Offset: 1

Views

Author

Antti Karttunen, May 31 2019

Keywords

Comments

a(n) is the least k >= A007947(n) such that n-k and n-(sigma(n)-k) are relatively prime.

Crossrefs

Programs

  • PARI
    A007947(n) = factorback(factorint(n)[, 1]); \\ From A007947
    A325971(n) = { my(s=sigma(n)); for(i=A007947(n), s, if(1==gcd(n-i, n-(s-i)), return(i))); (0); };
    A325971(n) = { my(s=sigma(n)); for(k=A007947(n), s, if(1==gcd(-n + k, (n-sigma(n))+k), return(k))); };

Formula

a(n) = A000203(n) - A325972(n).
a(n) = n - A325970(n).

A325972 a(n) is the largest k <= sigma(n)-A007947(n) such that n-k and n-(sigma(n)-k) are relatively prime.

Original entry on oeis.org

0, 1, 0, 5, 0, 5, 0, 13, 10, 7, 0, 21, 0, 9, 8, 29, 0, 32, 0, 31, 10, 13, 0, 53, 26, 15, 36, 29, 0, 41, 0, 61, 14, 19, 12, 85, 0, 21, 16, 79, 0, 53, 0, 61, 62, 25, 0, 117, 50, 83, 20, 71, 0, 113, 16, 105, 22, 31, 0, 137, 0, 33, 82, 125, 18, 77, 0, 91, 26, 73, 0, 188, 0, 39, 108, 101, 18, 89, 0, 175, 118, 43, 0, 181, 22
Offset: 1

Views

Author

Antti Karttunen, May 31 2019

Keywords

Crossrefs

Programs

  • PARI
    A007947(n) = factorback(factorint(n)[, 1]); \\ From A007947
    A325972(n) = { my(s=sigma(n)); forstep(i=s-A007947(n), 0, -1, if(1==gcd(n-i, n-(s-i)), return(i))); };

Formula

a(n) = A000203(n) - A325971(n).

A325816 Number of ways to form the sum sigma(n) = x+y, so that n-x and n-y are not coprime, with x and y in range 0..sigma(n).

Original entry on oeis.org

0, 0, 2, 0, 3, 11, 5, 0, 2, 10, 7, 15, 9, 13, 17, 0, 9, 14, 13, 22, 19, 19, 13, 41, 2, 27, 23, 55, 17, 49, 23, 0, 33, 31, 27, 4, 25, 31, 31, 55, 25, 65, 31, 43, 53, 45, 25, 71, 2, 14, 53, 67, 29, 81, 37, 61, 43, 49, 31, 113, 45, 55, 57, 0, 43, 97, 47, 77, 69, 73, 47, 74, 49, 61, 67, 95, 49, 113, 55, 101, 2, 67, 43, 129, 55, 81, 81, 91, 49
Offset: 1

Views

Author

Antti Karttunen, May 29 2019

Keywords

Crossrefs

Programs

  • PARI
    A325816(n) = { my(s=sigma(n)); sum(i=0, s, (1!=gcd(n-i, n-(s-i)))); };

Formula

a(n) = Sum_{i=0..sigma(n)} [1 <> gcd(n-i,n-(sigma(n)-i))], where [ ] is the Iverson bracket and sigma(n) is A000203(n).
a(n) = 1 + A000203(n) - A324213(n).
Previous Showing 11-16 of 16 results.