cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-56 of 56 results.

A336920 Lexicographically earliest infinite sequence such that a(i) = a(j) => f(i) = f(j), where f(n) = [A329697(n), A331410(n), A336158(n)], for all i, j >= 1.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 4, 1, 5, 3, 6, 2, 6, 4, 7, 1, 8, 5, 9, 3, 10, 6, 11, 2, 12, 6, 13, 4, 14, 7, 15, 1, 16, 8, 16, 5, 14, 9, 16, 3, 17, 10, 18, 6, 19, 11, 20, 2, 21, 12, 22, 6, 14, 13, 23, 4, 24, 14, 25, 7, 11, 15, 26, 1, 23, 16, 25, 8, 27, 16, 18, 5, 28, 14, 29, 9, 27, 16, 18, 3, 30, 17, 9, 10, 31, 18, 32, 6, 28, 19, 27, 11, 33, 20, 32, 2, 17, 21, 34, 12, 28, 22, 9, 6, 35
Offset: 1

Views

Author

Antti Karttunen, Aug 10 2020

Keywords

Comments

Restricted growth sequence transform of the triplet [A329697(n), A331410(n), A336158(n)].
For all i, j:
A324400(i) = A324400(j) => A003602(i) = A003602(j) => a(i) = a(j),
a(i) = a(j) => A335880(i) = A335880(j),
a(i) = a(j) => A336391(i) = A336391(j),
a(i) = a(j) => A336471(i) = A336471(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A000265(n) = (n>>valuation(n,2));
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A336158(n) = A046523(A000265(n));
    A329697(n) = if(!bitand(n,n-1),0,1+A329697(n-(n/vecmax(factor(n)[, 1]))));
    A331410(n) = if(!bitand(n,n-1),0,1+A331410(n+(n/vecmax(factor(n)[, 1]))));
    Aux336920(n) = [A329697(n), A331410(n), A336158(n)];
    v336920 = rgs_transform(vector(up_to, n, Aux336920(n)));
    A336920(n) = v336920[n];

A336925 Lexicographically earliest infinite sequence such that a(i) = a(j) => A336147(1+sigma(i)) = A336147(1+sigma(j)), for all i, j >= 1.

Original entry on oeis.org

1, 1, 2, 1, 3, 4, 5, 1, 6, 7, 4, 8, 9, 2, 2, 1, 7, 10, 11, 12, 13, 14, 2, 15, 1, 12, 16, 17, 18, 19, 13, 1, 3, 20, 3, 21, 22, 15, 17, 23, 12, 24, 9, 25, 26, 19, 3, 2, 27, 28, 19, 13, 20, 29, 19, 29, 5, 23, 15, 4, 11, 24, 30, 1, 25, 31, 32, 33, 24, 31, 19, 6, 9, 34, 2, 35, 24, 4, 5, 36, 37, 33, 25, 9, 38, 39, 29, 40, 23, 41, 42, 4, 43, 31, 29, 44, 13, 45, 46, 47, 48, 49, 30
Offset: 1

Views

Author

Antti Karttunen, Aug 10 2020

Keywords

Comments

Restricted growth sequence transform of the function f(n) = A336147(A088580(n)).
For all i, j:
A324400(i) = A324400(j) => a(i) = a(j),
a(i) = a(j) => A336691(i) = A336691(j),
a(i) = a(j) => A336924(i) = A336924(j).

Crossrefs

Cf. also A336926.

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A020639(n) = if(1==n, n, factor(n)[1, 1]);
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523
    A122111(n) = if(1==n,n,my(f=factor(n), es=Vecrev(f[,2]),is=concat(apply(primepi,Vecrev(f[,1])),[0]),pri=0,m=1); for(i=1, #es, pri += es[i]; m *= prime(pri)^(is[i]-is[1+i])); (m));
    A278221(n) = A046523(A122111(n));
    Aux336147(n) = [A020639(n),A278221(n)];
    v336925 = rgs_transform(vector(up_to, n, Aux336147(1+sigma(n))));
    A336925(n) = v336925[n];

A337200 Lexicographically earliest infinite sequence such that a(i) = a(j) => A278222(A337194(i)) = A278222(A337194(j)), for all i, j >= 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 3, 3, 4, 5, 1, 3, 1, 1, 1, 5, 4, 1, 1, 3, 1, 1, 1, 2, 1, 6, 3, 1, 1, 6, 5, 1, 4, 5, 3, 3, 1, 1, 6, 7, 3, 5, 2, 1, 3, 1, 4, 6, 1, 5, 1, 1, 2, 1, 5, 3, 3, 1, 1, 3, 3, 5, 5, 6, 1, 3, 1, 5, 4, 7, 7, 1, 5, 1, 2, 3, 1, 6, 6, 8, 1, 5, 1, 3, 1, 1, 5, 9, 3, 10, 5, 2, 2, 9, 1
Offset: 1

Views

Author

Antti Karttunen, Aug 20 2020

Keywords

Comments

Restricted growth sequence transform of f(n) = A278222(A337194(n)).
For all i, j: A324400(i) = A324400(j) => a(i) = a(j) => A337199(i) = A337199(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A000265(n) = (n>>valuation(n, 2));
    A337194(n) = (1+A000265(sigma(n)));
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A278222(n) = A046523(A005940(1+n));
    v337200 = rgs_transform(vector(up_to, n, A278222(A337194(n))));
    A337200(n) = v337200[n];

A337201 Lexicographically earliest infinite sequence such that a(i) = a(j) => A278221(A337194(i)) = A278221(A337194(j)), for all i, j >= 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 3, 3, 4, 5, 1, 3, 1, 1, 1, 5, 4, 1, 1, 3, 1, 1, 1, 2, 1, 6, 3, 1, 1, 6, 5, 1, 4, 5, 3, 3, 1, 1, 7, 8, 3, 3, 2, 1, 3, 1, 4, 6, 1, 5, 1, 1, 2, 1, 5, 3, 4, 1, 1, 3, 3, 2, 9, 7, 1, 4, 1, 5, 4, 8, 10, 1, 5, 1, 2, 11, 1, 6, 6, 12, 1, 5, 1, 3, 1, 1, 3, 13, 3, 14, 15, 2, 2, 16, 1
Offset: 1

Views

Author

Antti Karttunen, Aug 20 2020

Keywords

Comments

Restricted growth sequence transform of f(n) = A278221(A337194(n)).
For all i, j: A324400(i) = A324400(j) => a(i) = a(j) => A337198(i) = A337198(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A000265(n) = (n>>valuation(n, 2));
    A337194(n) = (1+A000265(sigma(n)));
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523
    A122111(n) = if(1==n,n,my(f=factor(n), es=Vecrev(f[,2]),is=concat(apply(primepi,Vecrev(f[,1])),[0]),pri=0,m=1); for(i=1, #es, pri += es[i]; m *= prime(pri)^(is[i]-is[1+i])); (m));
    A278221(n) = A046523(A122111(n));
    v337201 = rgs_transform(vector(up_to, n, A278221(A337194(n))));
    A337201(n) = v337201[n];

A336648 Lexicographically earliest infinite sequence such that a(i) = a(j) => A336476(i) = A336476(j), for all i, j >= 1.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 3, 1, 2, 1, 2, 2, 4, 2, 2, 2, 1, 2, 4, 2, 2, 3, 2, 1, 3, 2, 4, 1, 2, 2, 4, 2, 2, 4, 2, 2, 5, 2, 2, 2, 6, 1, 3, 2, 2, 4, 4, 2, 4, 2, 2, 3, 2, 2, 2, 1, 4, 3, 2, 2, 3, 4, 2, 1, 2, 2, 2, 2, 4, 4, 2, 2, 1, 2, 2, 4, 4, 2, 3, 2, 2, 5, 7, 2, 4, 2, 8, 2, 2, 6, 5, 1, 2, 3, 2, 2, 9
Offset: 1

Views

Author

Antti Karttunen, Jul 31 2020

Keywords

Comments

Restricted growth sequence transform of A336476.
For all i, j: A324400(i) = A324400(j) => A003602(i) = A003602(j) => a(i) = a(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A000593(n) = sigma(n>>valuation(n, 2));
    A336475(n) = { my(f=factor(n)); prod(i=1, #f~, if(2==f[i,1],1,(1+f[i,2]) * (f[i,1]^f[i,2]))); };
    A336476(n) = gcd(A000593(n), A336475(n));
    v336648 = rgs_transform(vector(up_to,n,A336476(n)));
    A336648(n) = v336648[n];

A344180 Lexicographically earliest infinite sequence such that a(i) = a(j) => f(i) = f(j) for all i, j >= 0, where f(n) = 0 if n is a Fibbinary number (A003714), otherwise f(n) = n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 1, 5, 6, 7, 8, 9, 1, 1, 1, 10, 1, 1, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 1, 1, 1, 21, 1, 1, 22, 23, 1, 1, 1, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 1, 1, 1, 45, 1, 1, 46, 47, 1, 1, 1, 48, 49, 50, 51, 52, 1, 1, 1, 53, 1, 1, 54, 55, 56, 57
Offset: 0

Views

Author

Antti Karttunen, May 16 2021

Keywords

Comments

For all i, j:
a(i) = a(j) => A085357(i) = A085357(j),
a(i) = a(j) => A213370(i) = A213370(j),
a(i) = a(j) => A344182(i) = A344182(j).

Crossrefs

Cf. A003714 (positions of 1's), A085357, A213370, A344182.
Cf. also A324400.

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    Aux344180(n) = if(!bitand(n,n+n),0,n);
    v344180 = rgs_transform(vector(1+up_to,n,Aux344180(n-1)));
    A344180(n) = v344180[1+n];
Previous Showing 51-56 of 56 results.