cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-24 of 24 results.

A324933 Denominator in the division of n by the product of prime indices of n.

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 4, 1, 4, 3, 5, 1, 6, 2, 2, 1, 7, 2, 8, 3, 8, 5, 9, 1, 9, 3, 8, 1, 10, 1, 11, 1, 10, 7, 12, 1, 12, 4, 4, 3, 13, 4, 14, 5, 4, 9, 15, 1, 16, 9, 14, 3, 16, 4, 3, 1, 16, 5, 17, 1, 18, 11, 16, 1, 18, 5, 19, 7, 6, 6, 20, 1, 21, 6, 6, 2, 20, 2, 22, 3
Offset: 1

Views

Author

Gus Wiseman, Mar 21 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of quotients n/A003963(n) begins: 1, 2, 3/2, 4, 5/3, 3, 7/4, 8, 9/4, 10/3, 11/5, 6, 13/6, 7/2, 5/2, 16, ...
		

Crossrefs

Programs

  • Mathematica
    Table[n/Times@@Cases[If[n==1,{},FactorInteger[n]],{p_,k_}:>PrimePi[p]^k],{n,100}]//Denominator

A324845 Matula-Goebel numbers of rooted trees where the branches of no non-leaf branch of any terminal subtree form a submultiset of the branches of the same subtree.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 27, 29, 31, 32, 33, 34, 35, 38, 40, 43, 44, 46, 49, 50, 51, 53, 57, 58, 59, 62, 63, 64, 67, 68, 69, 70, 71, 73, 76, 77, 79, 80, 81, 83, 85, 86, 87, 88, 92, 93, 95, 97, 98, 99, 100, 103, 106
Offset: 1

Views

Author

Gus Wiseman, Mar 18 2019

Keywords

Examples

			The sequence of terms together with their Matula-Goebel numbers begins:
   1: o
   2: (o)
   3: ((o))
   4: (oo)
   5: (((o)))
   7: ((oo))
   8: (ooo)
   9: ((o)(o))
  10: (o((o)))
  11: ((((o))))
  14: (o(oo))
  16: (oooo)
  17: (((oo)))
  19: ((ooo))
  20: (oo((o)))
  21: ((o)(oo))
  22: (o(((o))))
  23: (((o)(o)))
  25: (((o))((o)))
  27: ((o)(o)(o))
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    qaQ[n_]:=And[And@@Table[!Divisible[n,x],{x,DeleteCases[primeMS[n],1]}],And@@qaQ/@primeMS[n]];
    Select[Range[100],qaQ]

A324932 Numerator in the division of n by the product of prime indices of n.

Original entry on oeis.org

1, 2, 3, 4, 5, 3, 7, 8, 9, 10, 11, 6, 13, 7, 5, 16, 17, 9, 19, 20, 21, 22, 23, 12, 25, 13, 27, 7, 29, 5, 31, 32, 33, 34, 35, 9, 37, 19, 13, 40, 41, 21, 43, 44, 15, 46, 47, 24, 49, 50, 51, 26, 53, 27, 11, 14, 57, 29, 59, 10, 61, 62, 63, 64, 65, 33, 67, 68, 23
Offset: 1

Views

Author

Gus Wiseman, Mar 21 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of quotients n/A003963(n) begins: 1, 2, 3/2, 4, 5/3, 3, 7/4, 8, 9/4, 10/3, 11/5, 6, 13/6, 7/2, 5/2, 16, ...
		

Crossrefs

Programs

  • Mathematica
    Table[n/Times@@Cases[If[n==1,{},FactorInteger[n]],{p_,k_}:>PrimePi[p]^k],{n,100}]//Numerator

A325031 Numbers divisible by all prime indices of their prime indices.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 14, 16, 18, 19, 20, 21, 24, 26, 27, 28, 30, 32, 33, 36, 38, 40, 42, 46, 48, 49, 50, 52, 53, 54, 56, 57, 60, 63, 64, 66, 68, 70, 72, 74, 76, 78, 80, 81, 84, 87, 90, 92, 96, 98, 99, 100, 104, 106, 108, 112, 114, 120, 122, 126, 128
Offset: 1

Views

Author

Gus Wiseman, Mar 25 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. For example, the prime indices of 55 are {3,5} with prime indices {{2},{3}}. Since 55 is not divisible by 2 or 3, it does not belong to the sequence.

Examples

			The sequence of multisets of multisets whose MM-numbers (see A302242) belong to the sequence begins:
   1: {}
   2: {{}}
   3: {{1}}
   4: {{},{}}
   6: {{},{1}}
   7: {{1,1}}
   8: {{},{},{}}
   9: {{1},{1}}
  10: {{},{2}}
  12: {{},{},{1}}
  14: {{},{1,1}}
  16: {{},{},{},{}}
  18: {{},{1},{1}}
  19: {{1,1,1}}
  20: {{},{},{2}}
  21: {{1},{1,1}}
  24: {{},{},{},{1}}
  26: {{},{1,2}}
  27: {{1},{1},{1}}
  28: {{},{},{1,1}}
  30: {{},{1},{2}}
  32: {{},{},{},{},{}}
  33: {{1},{3}}
  36: {{},{},{1},{1}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],And@@Table[Divisible[#,i],{i,Union@@primeMS/@primeMS[#]}]&]
Previous Showing 21-24 of 24 results.