A371446
Number of carry-connected integer partitions whose distinct parts have no binary containments.
Original entry on oeis.org
1, 1, 2, 2, 3, 2, 4, 2, 5, 4, 4, 4, 8, 4, 7, 7, 12, 10, 14, 12, 15, 19, 19, 21, 32, 27, 33, 40, 46, 47, 61, 52, 75, 89, 95, 104, 129, 129, 149, 176, 188, 208, 249, 257, 296, 341, 373, 394, 476, 496, 552
Offset: 0
The a(12) = 8 through a(14) = 7 partitions:
(12) (13) (14)
(6,6) (10,3) (7,7)
(9,3) (5,5,3) (9,5)
(4,4,4) (1,1,1,1,1,1,1,1,1,1,1,1,1) (6,5,3)
(6,3,3) (5,3,3,3)
(3,3,3,3) (2,2,2,2,2,2,2)
(2,2,2,2,2,2) (1,1,1,1,1,1,1,1,1,1,1,1,1,1)
(1,1,1,1,1,1,1,1,1,1,1,1)
The first condition (carry-connected) is
A325098.
The second condition (stable) is
A325109.
A007718 counts non-isomorphic connected multiset partitions.
A048143 counts connected antichains of sets.
A070939 gives length of binary expansion.
-
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}], Length[Intersection@@s[[#]]]>0&]},If[c=={},s, csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
Table[Length[Select[IntegerPartitions[n], stableQ[bix/@Union[#],SubsetQ]&&Length[csm[bix/@#]]<=1&]],{n,0,30}]
A371455
Numbers k such that if we take the binary indices of each prime index of k we get an antichain of sets.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 21, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 35, 36, 37, 38, 41, 42, 43, 47, 48, 49, 52, 53, 54, 55, 56, 57, 58, 59, 61, 63, 64, 65, 67, 69, 71, 72, 73, 74, 76, 79, 81, 83, 84, 86, 89, 95, 96, 97, 98, 99
Offset: 1
The prime indices of 65 are {3,6} with binary indices {{1,2},{2,3}} so 65 is in the sequence.
The prime indices of 255 are {2,3,7} with binary indices {{2},{1,2},{1,2,3}} so 255 is not in the sequence.
Contains all powers of primes
A000961.
For prime indices of prime indices we have
A316476, carry-connected
A329559.
These antichains are counted by
A325109.
For binary indices of binary indices we have
A326704, carry-conn.
A326750.
A048143 counts connected antichains of sets.
A050320 counts set multipartitions of prime indices, see also
A318360.
A070939 gives length of binary expansion.
A089259 counts set multipartitions of integer partitions.
A116540 counts normal set multipartitions.
A371451 counts carry-connected components of binary indices.
-
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],stableQ[bix/@prix[#],SubsetQ]&]
Comments