A354906
Position of first appearance of n in A354579 = Number of distinct run-lengths of standard compositions.
Original entry on oeis.org
0, 1, 11, 119, 5615, 251871
Offset: 0
The terms together with their corresponding compositions begin:
0: ()
1: (1)
11: (2,1,1)
119: (1,1,2,1,1,1)
5615: (2,2,1,1,1,2,1,1,1,1)
251871: (1,1,1,2,2,1,1,1,1,2,1,1,1,1,1)
For run-sums instead of run-lengths we have
A246534 (firsts in
A353849).
These are the positions of first appearances in
A354579.
A005811 counts runs in binary expansion.
A333627 ranks the run-lengths of standard compositions.
A351596 ranks compositions with distinct run-lengths, counted by
A329739.
A353744 ranks compositions with equal run-lengths, counted by
A329738.
A353852 ranks compositions with distinct run-sums, counted by
A353850.
A353853-
A353859 are sequences pertaining to composition run-sum trajectory.
A353860 counts collapsible compositions.
-
stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
pd=Table[Length[Union[Length/@Split[stc[n]]]],{n,0,10000}];
Table[Position[pd,n][[1,1]]-1,{n,0,Max@@pd}]
A325256
Number of normal multisets of size n whose adjusted frequency depth is the maximum for multisets of that size.
Original entry on oeis.org
1, 1, 1, 2, 3, 10, 12, 12, 44, 128, 228, 422, 968, 1750, 420, 2100
Offset: 0
The a(1) = 1 through a(7) = 12 multisets:
{1} {12} {112} {1123} {11123} {111123} {1112234}
{122} {1223} {11223} {111234} {1112334}
{1233} {11233} {112345} {1112344}
{11234} {122223} {1122234}
{12223} {122234} {1123334}
{12233} {122345} {1123444}
{12234} {123333} {1222334}
{12333} {123334} {1222344}
{12334} {123345} {1223334}
{12344} {123444} {1223444}
{123445} {1233344}
{123455} {1233444}
Cf.
A011784,
A181819,
A182857,
A225486,
A323014,
A323023,
A325238,
A325254,
A325258,
A325277,
A325278,
A325280,
A325282,
A325283.
-
nn=10;
allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
fdadj[ptn_List]:=If[ptn=={},0,Length[NestWhileList[Sort[Length/@Split[#1]]&,ptn,Length[#1]>1&]]];
mfdm=Table[Max@@fdadj/@allnorm[n],{n,0,nn}];
Table[Length[Select[allnorm[n],fdadj[#]==mfdm[[n+1]]&]],{n,0,nn}]
Comments