cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A325573 Odd numbers n that have divisor d > 1 such that A048720(A065621(d),n/d) = n.

Original entry on oeis.org

9, 21, 33, 35, 45, 49, 65, 75, 93, 105, 129, 133, 135, 153, 155, 161, 165, 189, 195, 217, 225, 259, 273, 279, 297, 309, 315, 341, 345, 381, 385, 403, 441, 465, 513, 525, 527, 561, 567, 585, 589, 597, 611, 621, 635, 645, 651, 681, 693, 705, 713, 729, 765, 775, 793, 819, 837, 889, 899, 945, 961, 1025, 1029, 1035, 1057, 1065
Offset: 1

Views

Author

Antti Karttunen, May 10 2019

Keywords

Crossrefs

Subsequence of A071904 and of A325572.

Programs

  • PARI
    A048720(b,c) = fromdigits(Vec(Pol(binary(b))*Pol(binary(c)))%2, 2);
    A065621(n) = bitxor(n-1,n+n-1);
    isA325573(n) = ((n%2)&&fordiv(n,d,if(A048720(A065621(n/d),d)==n,return(d
    				

A379120 a(1) = 1; and for n > 1, a(n) is the smallest divisor d > 1 of n such that A048720(A065621(n/d),d) is equal to n.

Original entry on oeis.org

1, 2, 3, 2, 5, 3, 7, 2, 3, 5, 11, 3, 13, 7, 15, 2, 17, 3, 19, 5, 7, 11, 23, 3, 25, 13, 27, 7, 29, 15, 31, 2, 3, 17, 7, 3, 37, 19, 39, 5, 41, 7, 43, 11, 15, 23, 47, 3, 7, 25, 51, 13, 53, 27, 55, 7, 57, 29, 59, 15, 61, 31, 63, 2, 5, 3, 67, 17, 69, 7, 71, 3, 73, 37, 15, 19, 77, 39, 79, 5, 81, 41, 83, 7, 85, 43, 87, 11, 89
Offset: 1

Views

Author

Antti Karttunen, Dec 17 2024

Keywords

Crossrefs

Programs

  • PARI
    A048720(b,c) = fromdigits(Vec(Pol(binary(b))*Pol(binary(c)))%2, 2);
    A065621(n) = bitxor(n-1,n+n-1);
    A379120(n) = if(1==n,n,fordiv(n,d,if((d>1)&&A048720(A065621(n/d),d)==n,return(d))));

Formula

a(n) = n / A325567(n).

A379127 a(1) = 1; for n > 1, a(n) is the largest proper divisor d of 2n-1 such that A048720(A065621(d),(2n-1)/d) is equal to 2n-1.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 11, 5, 1, 1, 1, 1, 3, 1, 7, 1, 1, 1, 1, 1, 1, 1, 13, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 43, 1, 19, 9, 1, 1, 1, 1, 1, 1, 1, 1, 3, 5, 1, 1, 23, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 13, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Dec 21 2024

Keywords

Comments

The position of the first occurrence of odd numbers k = 1, 3, 5, 7, 9, ... in this sequence is given by (1/2) * (A379128(2*k-1)+1).

Crossrefs

Odd bisection of A325567.

Programs

Formula

a(n) = A325567(2*n-1).
Previous Showing 11-13 of 13 results.