cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A326879 BII-numbers of connected connectedness systems.

Original entry on oeis.org

0, 1, 2, 4, 5, 6, 7, 8, 16, 17, 24, 25, 32, 34, 40, 42, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112
Offset: 1

Views

Author

Gus Wiseman, Jul 29 2019

Keywords

Comments

We define a connectedness system (investigated by Vim van Dam in 2002) to be a set of finite nonempty sets (edges) that is closed under taking the union of any two overlapping edges. It is connected if it contains an edge containing all the vertices.
A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every finite set of finite nonempty sets has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.
The enumeration of connected connectedness systems by number of vertices is given by A326868.

Examples

			The sequence of all connected connectedness systems together with their BII-numbers begins:
   0: {}
   1: {{1}}
   2: {{2}}
   4: {{1,2}}
   5: {{1},{1,2}}
   6: {{2},{1,2}}
   7: {{1},{2},{1,2}}
   8: {{3}}
  16: {{1,3}}
  17: {{1},{1,3}}
  24: {{3},{1,3}}
  25: {{1},{3},{1,3}}
  32: {{2,3}}
  34: {{2},{2,3}}
  40: {{3},{2,3}}
  42: {{2},{3},{2,3}}
  64: {{1,2,3}}
  65: {{1},{1,2,3}}
  66: {{2},{1,2,3}}
  67: {{1},{2},{1,2,3}}
  68: {{1,2},{1,2,3}}
		

Crossrefs

Connected connectedness systems are counted by A326868, with unlabeled version A326869.
Connected connectedness systems without singletons are counted by A072447.
The not necessarily connected case is A326872.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    connsysQ[eds_]:=SubsetQ[eds,Union@@@Select[Tuples[eds,2],Intersection@@#!={}&]];
    Select[Range[0,100],#==0||MemberQ[bpe/@bpe[#],Union@@bpe/@bpe[#]]&&connsysQ[bpe/@bpe[#]]&]

A326873 BII-numbers of connectedness systems without singletons.

Original entry on oeis.org

0, 4, 16, 32, 64, 68, 80, 84, 96, 100, 112, 116, 256, 288, 512, 528, 1024, 1028, 1280, 1284, 1536, 1540, 1792, 1796, 2048, 2052, 4096, 4112, 4352, 4368, 6144, 6160, 6400, 6416, 8192, 8224, 8704, 8736, 10240, 10272, 10752, 10784, 16384, 16388, 16400, 16416
Offset: 1

Views

Author

Gus Wiseman, Jul 29 2019

Keywords

Comments

We define a connectedness system (investigated by Vim van Dam in 2002) to be a set of finite nonempty sets (edges) that is closed under taking the union of any two overlapping edges.
A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every finite set of finite nonempty sets has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.
The enumeration of these set-systems by number of covered vertices is given by A326877.

Examples

			The sequence of all connectedness systems without singletons together with their BII-numbers begins:
     0: {}
     4: {{1,2}}
    16: {{1,3}}
    32: {{2,3}}
    64: {{1,2,3}}
    68: {{1,2},{1,2,3}}
    80: {{1,3},{1,2,3}}
    84: {{1,2},{1,3},{1,2,3}}
    96: {{2,3},{1,2,3}}
   100: {{1,2},{2,3},{1,2,3}}
   112: {{1,3},{2,3},{1,2,3}}
   116: {{1,2},{1,3},{2,3},{1,2,3}}
   256: {{1,4}}
   288: {{2,3},{1,4}}
   512: {{2,4}}
   528: {{1,3},{2,4}}
  1024: {{1,2,4}}
  1028: {{1,2},{1,2,4}}
  1280: {{1,4},{1,2,4}}
  1284: {{1,2},{1,4},{1,2,4}}
		

Crossrefs

Connectedness systems without singletons are counted by A072446, with unlabeled case A072444.
Connectedness systems are counted by A326866, with unlabeled case A326867.
BII-numbers of connectedness systems are A326872.
The connected case is A326879.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    connnosQ[eds_]:=!MemberQ[Length/@eds,1]&&SubsetQ[eds,Union@@@Select[Tuples[eds,2],Intersection@@#!={}&]];
    Select[Range[0,1000],connnosQ[bpe/@bpe[#]]&]

A326874 BII-numbers of abstract simplicial complexes.

Original entry on oeis.org

0, 1, 2, 3, 7, 8, 9, 10, 11, 15, 25, 27, 31, 42, 43, 47, 59, 63, 127, 128, 129, 130, 131, 135, 136, 137, 138, 139, 143, 153, 155, 159, 170, 171, 175, 187, 191, 255, 385, 387, 391, 393, 395, 399, 409, 411, 415, 427, 431, 443, 447, 511, 642, 643, 647, 650, 651, 655
Offset: 1

Views

Author

Gus Wiseman, Jul 29 2019

Keywords

Comments

An abstract simplicial complex is a set of finite nonempty sets (edges) that is closed under taking a nonempty subset of any edge.
A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every finite set of finite nonempty sets has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.
The enumeration of abstract simplicial complexes by number of covered vertices is given by A307249.

Examples

			The sequence of all abstract simplicial complexes together with their BII-numbers begins:
    0: {}
    1: {{1}}
    2: {{2}}
    3: {{1},{2}}
    7: {{1},{2},{1,2}}
    8: {{3}}
    9: {{1},{3}}
   10: {{2},{3}}
   11: {{1},{2},{3}}
   15: {{1},{2},{1,2},{3}}
   25: {{1},{3},{1,3}}
   27: {{1},{2},{3},{1,3}}
   31: {{1},{2},{3},{1,2},{1,3}}
   42: {{2},{3},{2,3}}
   43: {{1},{2},{3},{2,3}}
   47: {{1},{2},{3},{1,2},{2,3}}
   59: {{1},{2},{3},{1,3},{2,3}}
   63: {{1},{2},{3},{1,2},{1,3},{2,3}}
  127: {{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}
  128: {{4}}
  129: {{1},{4}}
		

Crossrefs

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Range[0,100],SubsetQ[bpe/@bpe[#],DeleteCases[Union@@Subsets/@bpe/@bpe[#],{}]]&]

A327016 BII-numbers of finite T_0 topologies without their empty set.

Original entry on oeis.org

0, 1, 2, 5, 6, 7, 8, 17, 24, 25, 34, 40, 42, 69, 70, 71, 81, 85, 87, 88, 89, 93, 98, 102, 103, 104, 106, 110, 120, 121, 122, 127, 128, 257, 384, 385, 514, 640, 642, 1029, 1030, 1031, 1281, 1285, 1287, 1408, 1409, 1413, 1538, 1542, 1543, 1664, 1666, 1670, 1920
Offset: 1

Views

Author

Gus Wiseman, Aug 14 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets. The dual of a set-system has, for each vertex, one edge consisting of the indices (or positions) of the edges containing that vertex. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. The T_0 condition means that the dual is strict (no repeated edges).
A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every finite set of finite nonempty sets has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.

Examples

			The sequence of all finite T_0 topologies without their empty set together with their BII-numbers begins:
   0: {}
   1: {{1}}
   2: {{2}}
   5: {{1},{1,2}}
   6: {{2},{1,2}}
   7: {{1},{2},{1,2}}
   8: {{3}}
  17: {{1},{1,3}}
  24: {{3},{1,3}}
  25: {{1},{3},{1,3}}
  34: {{2},{2,3}}
  40: {{3},{2,3}}
  42: {{2},{3},{2,3}}
  69: {{1},{1,2},{1,2,3}}
  70: {{2},{1,2},{1,2,3}}
  71: {{1},{2},{1,2},{1,2,3}}
  81: {{1},{1,3},{1,2,3}}
  85: {{1},{1,2},{1,3},{1,2,3}}
  87: {{1},{2},{1,2},{1,3},{1,2,3}}
  88: {{3},{1,3},{1,2,3}}
		

Crossrefs

T_0 topologies are A001035, with unlabeled version A000112.
BII-numbers of topologies without their empty set are A326876.
BII-numbers of T_0 set-systems are A326947.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Range[0,1000],UnsameQ@@dual[bpe/@bpe[#]]&&SubsetQ[bpe/@bpe[#],Union[Union@@@Tuples[bpe/@bpe[#],2],DeleteCases[Intersection@@@Tuples[bpe/@bpe[#],2],{}]]]&]
Previous Showing 11-14 of 14 results.