A072447 Number of connectedness systems on n vertices that contain all singletons and the set of all the vertices.
1, 1, 8, 378, 252000, 18687534984
Offset: 1
Examples
a(3) = 8 because of the 8 sets: {{1}, {2}, {3}, {1, 2, 3}}; {{1}, {2}, {3}, {1, 2}, {1, 2, 3}}; {{1}, {2}, {3}, {1, 3}, {1, 2, 3}}; {{1}, {2}, {3}, {2, 3}, {1, 2, 3}}; {{1}, {2}, {3}, {1, 2}, {1, 3}, {1, 2, 3}}; {{1}, {2}, {3}, {1, 2}, {2, 3}, {1, 2, 3}}; {{1}, {2}, {3}, {1, 3}, {2, 3}, {1, 2, 3}}; {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.
Links
- Christian Sievers, Comments on connectedness systems: the conjecture about A072447
- Wim van Dam, Sub Power Set Sequences
- Gus Wiseman, Every Clutter Is a Tree of Blobs, The Mathematica Journal, Vol. 19, 2017.
Crossrefs
Programs
-
Mathematica
Table[Length[Select[Subsets[Subsets[Range[n],{2,n}]],(n==0||MemberQ[#,Range[n]])&&SubsetQ[#,Union@@@Select[Tuples[#,2],Intersection@@#!={}&]]&]],{n,0,4}] (* returns a(1) = 0 similar to A326877. - Gus Wiseman, Aug 01 2019 *)
Formula
a(n > 1) = A326868(n)/2^n. - Gus Wiseman, Aug 01 2019
Extensions
Edited by N. J. A. Sloane, Oct 21 2023 (a(6) corrected by Christian Sievers, Oct 20 2023)
Edited by Christian Sievers, Oct 26 2023
Comments