A329628
Smallest BII-number of an intersecting antichain with n edges.
Original entry on oeis.org
0, 1, 20, 52, 2880, 275520
Offset: 0
The sequence of terms together with their corresponding set-systems begins:
0: {}
1: {{1}}
20: {{1,2},{1,3}}
52: {{1,2},{1,3},{2,3}}
2880: {{1,2,3},{1,4},{2,4},{3,4}}
275520: {{1,2,3},{1,2,4},{1,3,4},{2,3,4},{1,2,5}}
The not necessarily intersecting version is
A329626.
MM-numbers of intersecting antichains are
A329366.
BII-numbers of antichains are
A326704.
BII-numbers of intersecting set-systems are
A326910.
BII-numbers of intersecting antichains are
A329561.
Covering intersecting antichains of sets are
A305844.
Non-isomorphic intersecting antichains of multisets are
A306007.
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
First/@GatherBy[Select[Range[0,10000],stableQ[bpe/@bpe[#],SubsetQ[#1,#2]||Intersection[#1,#2]=={}&]&],Length[bpe[#]]&]
A326911
BII-numbers of set-systems with empty intersection.
Original entry on oeis.org
0, 3, 7, 9, 10, 11, 12, 13, 14, 15, 18, 19, 22, 23, 25, 26, 27, 28, 29, 30, 31, 33, 35, 37, 39, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 67, 71, 73, 74, 75, 76, 77, 78, 79, 82, 83, 86, 87, 89, 90, 91, 92, 93, 94, 95
Offset: 1
The sequence of all set-systems with empty intersection together with their BII-numbers begins:
0: {}
3: {{1},{2}}
7: {{1},{2},{1,2}}
9: {{1},{3}}
10: {{2},{3}}
11: {{1},{2},{3}}
12: {{1,2},{3}}
13: {{1},{1,2},{3}}
14: {{2},{1,2},{3}}
15: {{1},{2},{1,2},{3}}
18: {{2},{1,3}}
19: {{1},{2},{1,3}}
22: {{2},{1,2},{1,3}}
23: {{1},{2},{1,2},{1,3}}
25: {{1},{3},{1,3}}
26: {{2},{3},{1,3}}
27: {{1},{2},{3},{1,3}}
28: {{1,2},{3},{1,3}}
29: {{1},{1,2},{3},{1,3}}
30: {{2},{1,2},{3},{1,3}}
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
Select[Range[0,100],#==0||Intersection@@bpe/@bpe[#]=={}&]
A327059
Number of pairwise intersecting set-systems covering a subset of {1..n} whose dual is a weak antichain.
Original entry on oeis.org
1, 2, 4, 10, 178
Offset: 0
The a(0) = 1 through a(3) = 10 set-systems:
{} {} {} {}
{{1}} {{1}} {{1}}
{{2}} {{2}}
{{12}} {{3}}
{{12}}
{{13}}
{{23}}
{{123}}
{{12}{13}{23}}
{{12}{13}{23}{123}}
Intersecting set-systems are
A051185.
The BII-numbers of these set-systems are the intersection of
A326910 and
A326966.
Set-systems whose dual is a weak antichain are
A326968.
The unlabeled multiset partition version is
A327060.
-
dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],Intersection[#1,#2]=={}&],stableQ[dual[#],SubsetQ]&]],{n,0,3}]
A327061
BII-numbers of pairwise intersecting set-systems where every two covered vertices appear together in some edge (cointersecting).
Original entry on oeis.org
0, 1, 2, 4, 5, 6, 8, 16, 17, 24, 32, 34, 40, 52, 64, 65, 66, 68, 69, 70, 72, 80, 81, 84, 85, 88, 96, 98, 100, 102, 104, 112, 116, 120, 128, 256, 257, 384, 512, 514, 640, 772, 1024, 1025, 1026, 1028, 1029, 1030, 1152, 1280, 1281, 1284, 1285, 1408, 1536, 1538
Offset: 1
The sequence of all pairwise intersecting, cointersecting set-systems together with their BII-numbers begins:
0: {}
1: {{1}}
2: {{2}}
4: {{1,2}}
5: {{1},{1,2}}
6: {{2},{1,2}}
8: {{3}}
16: {{1,3}}
17: {{1},{1,3}}
24: {{3},{1,3}}
32: {{2,3}}
34: {{2},{2,3}}
40: {{3},{2,3}}
52: {{1,2},{1,3},{2,3}}
64: {{1,2,3}}
65: {{1},{1,2,3}}
66: {{2},{1,2,3}}
68: {{1,2},{1,2,3}}
69: {{1},{1,2},{1,2,3}}
70: {{2},{1,2},{1,2,3}}
The unlabeled multiset partition version is
A319765.
These set-systems are counted by
A327037 (covering) and
A327038 (not covering).
-
dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
Select[Range[0,100],stableQ[bpe/@bpe[#],Intersection[#1,#2]=={}&]&&stableQ[dual[bpe/@bpe[#]],Intersection[#1,#2]=={}&]&]
Comments