cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A327060 Number of non-isomorphic weight-n weak antichains of multisets where every two vertices appear together in some edge (cointersecting).

Original entry on oeis.org

1, 1, 3, 4, 9, 11, 30, 42, 103, 194, 443
Offset: 0

Views

Author

Gus Wiseman, Aug 18 2019

Keywords

Comments

A multiset partition is a finite multiset of finite nonempty multisets. It is a weak antichain if no part is a proper submultiset of any other.

Examples

			Non-isomorphic representatives of the a(0) = 1 through a(5) = 11 multiset partitions:
  {}  {{1}}  {{11}}    {{111}}      {{1111}}        {{11111}}
             {{12}}    {{122}}      {{1122}}        {{11222}}
             {{1}{1}}  {{123}}      {{1222}}        {{12222}}
                       {{1}{1}{1}}  {{1233}}        {{12233}}
                                    {{1234}}        {{12333}}
                                    {{11}{11}}      {{12344}}
                                    {{12}{12}}      {{12345}}
                                    {{12}{22}}      {{11}{122}}
                                    {{1}{1}{1}{1}}  {{12}{222}}
                                                    {{33}{123}}
                                                    {{1}{1}{1}{1}{1}}
		

Crossrefs

Antichains are A000372.
The BII-numbers of these set-systems are the intersection of A326853 and A326704.
Cointersecting set-systems are A327039.
The set-system version is A327057, with covering case A327058.

A327425 Number of unlabeled antichains of nonempty sets covering n vertices where every two vertices appear together in some edge (cointersecting).

Original entry on oeis.org

1, 1, 1, 2, 6, 54
Offset: 0

Views

Author

Gus Wiseman, Sep 11 2019

Keywords

Comments

An antichain is a set of sets, none of which is a subset of any other. It is covering if there are no isolated vertices.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(4) = 6 antichains:
    {1}  {12}  {123}         {1234}
               {12}{13}{23}  {12}{134}{234}
                             {124}{134}{234}
                             {12}{13}{14}{234}
                             {123}{124}{134}{234}
                             {12}{13}{14}{23}{24}{34}
		

Crossrefs

The labeled version is A327020.
Unlabeled covering antichains are A261005.
The weighted version is A327060.
Previous Showing 11-12 of 12 results.