cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-52 of 52 results.

A336735 Products of elements of A304711.

Original entry on oeis.org

1, 2, 4, 6, 8, 10, 12, 14, 15, 16, 18, 20, 22, 24, 26, 28, 30, 32, 33, 34, 35, 36, 38, 40, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 58, 60, 62, 64, 66, 68, 69, 70, 72, 74, 75, 76, 77, 80, 82, 84, 85, 86, 88, 90, 92, 93, 94, 95, 96, 98, 99, 100, 102, 104, 106
Offset: 1

Views

Author

Gus Wiseman, Aug 02 2020

Keywords

Comments

A304711 lists numbers whose distinct prime indices are pairwise coprime.
First differs from A304711 in having 84.

Examples

			The sequence of terms together with their prime indices begins:
      1: {}            28: {1,1,4}         52: {1,1,6}
      2: {1}           30: {1,2,3}         54: {1,2,2,2}
      4: {1,1}         32: {1,1,1,1,1}     55: {3,5}
      6: {1,2}         33: {2,5}           56: {1,1,1,4}
      8: {1,1,1}       34: {1,7}           58: {1,10}
     10: {1,3}         35: {3,4}           60: {1,1,2,3}
     12: {1,1,2}       36: {1,1,2,2}       62: {1,11}
     14: {1,4}         38: {1,8}           64: {1,1,1,1,1,1}
     15: {2,3}         40: {1,1,1,3}       66: {1,2,5}
     16: {1,1,1,1}     44: {1,1,5}         68: {1,1,7}
     18: {1,2,2}       45: {2,2,3}         69: {2,9}
     20: {1,1,3}       46: {1,9}           70: {1,3,4}
     22: {1,5}         48: {1,1,1,1,2}     72: {1,1,1,2,2}
     24: {1,1,1,2}     50: {1,3,3}         74: {1,12}
     26: {1,6}         51: {2,7}           75: {2,3,3}
		

Crossrefs

A181818 is the version for superprimorials, with complement A336426.
A336496 is the version for superfactorials, with complement A336497.
A336620 is the complement.
A000837 counts relatively prime partitions, with strict case A007360.
A001055 counts factorizations.
A302696 lists numbers with coprime prime indices.
A304711 lists numbers with coprime distinct prime indices.

Programs

  • Mathematica
    nn=100;
    dat=Select[Range[nn],CoprimeQ@@PrimePi/@First/@FactorInteger[#]&];
    facsusing[s_,n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facsusing[Select[s,Divisible[n/d,#]&],n/d],Min@@#>=d&]],{d,Select[s,Divisible[n,#]&]}]];
    Select[Range[nn],facsusing[dat,#]!={}&]

A338318 Composite numbers whose prime indices are pairwise intersecting (non-coprime).

Original entry on oeis.org

9, 21, 25, 27, 39, 49, 57, 63, 65, 81, 87, 91, 111, 115, 117, 121, 125, 129, 133, 147, 159, 169, 171, 183, 185, 189, 203, 213, 235, 237, 243, 247, 259, 261, 267, 273, 289, 299, 301, 303, 305, 319, 321, 325, 333, 339, 343, 351, 361, 365, 371, 377, 387, 393
Offset: 1

Views

Author

Gus Wiseman, Oct 31 2020

Keywords

Comments

First differs from A322336 in lacking 2535, with prime indices {2,3,6,6}.
First differs from A327685 in having 17719, with prime indices {6,10,15}.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also Heinz numbers of pairwise intersecting (non-coprime) partitions with more than one part. The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions.

Examples

			The sequence of terms together with their prime indices begins:
      9: {2,2}        121: {5,5}        243: {2,2,2,2,2}
     21: {2,4}        125: {3,3,3}      247: {6,8}
     25: {3,3}        129: {2,14}       259: {4,12}
     27: {2,2,2}      133: {4,8}        261: {2,2,10}
     39: {2,6}        147: {2,4,4}      267: {2,24}
     49: {4,4}        159: {2,16}       273: {2,4,6}
     57: {2,8}        169: {6,6}        289: {7,7}
     63: {2,2,4}      171: {2,2,8}      299: {6,9}
     65: {3,6}        183: {2,18}       301: {4,14}
     81: {2,2,2,2}    185: {3,12}       303: {2,26}
     87: {2,10}       189: {2,2,2,4}    305: {3,18}
     91: {4,6}        203: {4,10}       319: {5,10}
    111: {2,12}       213: {2,20}       321: {2,28}
    115: {3,9}        235: {3,15}       325: {3,3,6}
    117: {2,2,6}      237: {2,22}       333: {2,2,12}
		

Crossrefs

A200976 counts the partitions with these Heinz numbers.
A302696 is the pairwise coprime instead of pairwise non-coprime version.
A337694 includes the primes.
A002808 lists composite numbers.
A318717 counts pairwise intersecting strict partitions.
A328673 counts partitions with pairwise intersecting distinct parts, with Heinz numbers A328867 and restriction to triples A337599 (except n = 3).

Programs

  • Mathematica
    stabstrQ[u_,Q_]:=And@@Not/@Q@@@Tuples[u,2];
    Select[Range[2,100],!PrimeQ[#]&&stabstrQ[PrimePi/@First/@FactorInteger[#],CoprimeQ]&]

Formula

Equals A337694 \ A008578.
Previous Showing 51-52 of 52 results.