cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-24 of 24 results.

A330713 Numbers k such that both k and k+1 are Zeckendorf-Niven numbers (A328208) and lazy-Fibonacci-Niven numbers (A328212).

Original entry on oeis.org

1, 7475, 10205, 13740, 40754, 52479, 93044, 95984, 141911, 151487, 196416, 198255, 202824, 202895, 213920, 231552, 335535, 339744, 363320, 366876, 404719, 408680, 434259, 446480, 487710, 495159, 504440, 528408, 585599, 607410, 645560, 646575, 665567, 735020, 736280
Offset: 1

Views

Author

Amiram Eldar, Dec 27 2019

Keywords

Comments

Can 3 consecutive numbers be both Zeckendorf-Niven numbers and lazy-Fibonacci-Niven numbers? Equivalently, are there numbers that are both in A328210 and A328214?

Examples

			7475 is a term since A007895(7475) = 5 and A112310(7475) = 13 and both 5 and 13 are divisors of 7475, and A007895(7476) = 6 and A112310(7476) = 12 and both 6 and 12 are divisors of 7476.
		

Crossrefs

Intersection of A328209 and A328213.

A331090 Positive numbers k such that -k, -(k + 1), and -(k + 2) are 3 consecutive negative negaFibonacci-Niven numbers (A331088).

Original entry on oeis.org

1, 2, 20, 54, 55, 56, 110, 376, 398, 974, 986, 1084, 1744, 2464, 2524, 3304, 3870, 5223, 5718, 6095, 6124, 6184, 6663, 6764, 6844, 7142, 7684, 9035, 9124, 10590, 11598, 11975, 12606, 13444, 13504, 14284, 14915, 17164, 17643, 17710, 17714, 17824, 17884, 18698, 18905, 19494, 23191, 24243, 24785, 25542, 26382, 27390, 29644, 34278, 35464
Offset: 1

Views

Author

Amiram Eldar, Jan 08 2020

Keywords

Comments

Numbers of the form F(6*k + 2) - 1 and F(6*k + 4) - 1, where F(m) is the m-th Fibonacci number, are terms.
If m is of the form F(k) - 1, where k > 2 is congruent to {2, 10} mod 24, then {-m, -(m + 1), -(m + 2), -(m + 3), -(m + 4)} are 5 consecutive negative negaFibonacci-Niven numbers.

Crossrefs

Programs

  • Mathematica
    ind[n_] := Floor[Log[Abs[n]*Sqrt[5] + 1/2]/Log[GoldenRatio]];
    f[1] = 1; f[n_] := If[n > 0, i = ind[n - 1]; If[EvenQ[i], i++]; i, i = ind[-n]; If[OddQ[i], i++]; i];
    negaFibTermsNum[n_] := Module[{k = n, s = 0}, While[k != 0, i = f[k]; s += 1; k -= Fibonacci[-i]]; s];
    negFibQ[n_] := Divisible[n, negaFibTermsNum[-n]];
    nConsec = 3; neg = negFibQ /@ Range[nConsec]; seq = {}; c = 0;
    k = nConsec+1; While[c < 55, If[And @@ neg, c++; AppendTo[seq, k - nConsec]];neg = Join[Rest[neg], {negFibQ[k]}]; k++]; seq

A377273 Starts of runs of 3 consecutive integers that are terms in A377209.

Original entry on oeis.org

1, 2, 3, 4, 231700599, 1069467839, 1156703470, 1241186868, 2533742848, 2684864798, 3037193808, 5056780650, 7073145000, 7557047134, 9623855878, 12090760318, 12120887700, 13816479742, 14430478270, 15811947072, 16864260048, 20905152190, 22735441078, 23224253128, 23269229774, 23766221400, 25175490262
Offset: 1

Views

Author

Amiram Eldar, Oct 22 2024

Keywords

Examples

			231700599 is a term since 231700599, 231700600 and 231700601 are all terms in A377209: 231700599/A007895(231700599) = 17823123 and 17823123/A007895(17823123) = 1980347 are integers, 231700600/A007895(231700600) = 23170060 and 23170060/A007895(23170060) = 2317006 are integers, and 231700601/A007895(231700601) = 21063691 and 21063691/A007895(21063691) = 1914881 are integers.
		

Crossrefs

Cf. A007895, A376794 (binary analog).
Subsequence of A328208, A328209, A328210, A377209 and A377271.

Programs

  • PARI
    zeck(n) = if(n<4, n>0, my(k=2, s, t); while(fibonacci(k++)<=n, ); while(k && n, t=fibonacci(k); if(t<=n, n-=t; s++); k--); s); \\ Charles R Greathouse IV at A007895
    is1(k) = {my(z = zeck(k)); !(k % z) && !((k/z) % zeck(k/z)); }
    lista(kmax) = {my(q1 = is1(1), q2 = is1(2), q3); for(k = 3, kmax, q3 = is1(k); if(q1 && q2 && q3, print1(k-2, ", ")); q1 = q2; q2 = q3);}

A331823 Positive numbers k such that -k, -(k + 1), and -(k + 2) are 3 consecutive negative negabinary-Niven numbers (A331728).

Original entry on oeis.org

2, 8, 32, 54, 114, 128, 174, 234, 294, 370, 413, 414, 474, 512, 534, 580, 654, 774, 894, 954, 1000, 1014, 1134, 1430, 1734, 1794, 1840, 1854, 1914, 1974, 2034, 2048, 2093, 2094, 2154, 2214, 2334, 2574, 2680, 2694, 2814, 2870, 3054, 3100, 3520, 3773, 3774, 3834
Offset: 1

Views

Author

Amiram Eldar, Jan 27 2020

Keywords

Crossrefs

Programs

  • Mathematica
    negaBinWt[n_] := negaBinWt[n] = If[n == 0, 0, negaBinWt[Quotient[n - 1, -2]] + Mod[n, 2]]; negaBinNivenQ[n_] := Divisible[n, negaBinWt[-n]]; nConsec = 3; neg = negaBinNivenQ /@ Range[nConsec]; seq = {}; c = 0; k = nConsec+1; While[c < 50, If[And @@ neg, c++; AppendTo[seq, k - nConsec]]; neg = Join[Rest[neg], {negaBinNivenQ[k]}]; k++]; seq
Previous Showing 21-24 of 24 results.