cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 30 results.

A331088 Positive numbers k such that -k is a negative negaFibonacci-Niven number, i.e., divisible by the number of terms in its negaFibonacci representation (A331084).

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 12, 15, 16, 18, 20, 21, 22, 24, 27, 30, 36, 42, 44, 45, 48, 50, 51, 54, 55, 56, 57, 58, 60, 66, 72, 75, 76, 80, 84, 90, 92, 96, 100, 104, 105, 108, 110, 111, 112, 115, 116, 120, 124, 126, 128, 129, 132, 136, 138, 141, 142, 144, 150, 152, 153, 156, 168, 170, 172, 175, 176, 180, 184, 186, 190, 192, 196, 198
Offset: 1

Views

Author

Amiram Eldar, Jan 08 2020

Keywords

Comments

The k-th Fibonacci number is a term for all even k, since its negaFibonacci representation is 1 followed by (k-1) zeros.

Examples

			4 is a term since the negaFibonacci representation of -4 is 1010 whose sum of digits is 1 + 0 + 1 + 0 = 2 which is a divisor of 4.
		

Crossrefs

Programs

  • Mathematica
    ind[n_] := Floor[Log[Abs[n]*Sqrt[5] + 1/2]/Log[GoldenRatio]];
    f[1] = 1; f[n_] := If[n > 0, i = ind[n - 1]; If[EvenQ[i], i++]; i, i = ind[-n]; If[OddQ[i], i++]; i];
    negaFibTermsNum[n_] := Module[{k = n, s = 0}, While[k != 0, i = f[k]; s += 1; k -= Fibonacci[-i]]; s];
    Select[Range[200], Divisible[#, negaFibTermsNum[-#]] &]

A364216 Jacobsthal-Niven numbers: numbers that are divisible by the sum of the digits in their Jacobsthal representation (A280049).

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 9, 11, 12, 14, 15, 16, 20, 22, 24, 27, 28, 32, 33, 36, 40, 42, 43, 44, 45, 46, 48, 51, 52, 54, 56, 57, 60, 68, 72, 75, 76, 84, 86, 87, 88, 92, 93, 95, 96, 99, 100, 104, 105, 108, 112, 115, 117, 120, 125, 126, 128, 129, 132, 135, 136, 138, 140
Offset: 1

Views

Author

Amiram Eldar, Jul 14 2023

Keywords

Comments

Numbers k such that A364215(k) | k.
A007583 is a subsequence since A364215(A007583(n)) = 1 for n >= 0.

Crossrefs

Programs

  • Mathematica
    seq[kmax_] := Module[{m = 1, s = {}}, Do[If[Divisible[k, DigitCount[m, 2, 1]], AppendTo[s, k]]; While[m++; OddQ[IntegerExponent[m, 2]]], {k, 1, kmax}]; s]; seq[140]
  • PARI
    lista(kmax) = {my(m = 1); for(k = 1, kmax, if( !(k % sumdigits(m, 2)), print1(k,", ")); until(valuation(m, 2)%2 == 0, m++));}

A364379 Greedy Jacobsthal-Niven numbers: numbers that are divisible by the sum of the digits in their representation in Jacobsthal greedy base (A265747).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 14, 15, 16, 20, 21, 22, 24, 26, 27, 28, 32, 33, 36, 40, 42, 43, 44, 45, 46, 48, 51, 52, 54, 56, 57, 60, 64, 68, 69, 72, 75, 76, 80, 84, 85, 86, 87, 88, 90, 92, 93, 96, 99, 100, 104, 105, 106, 108, 111, 112, 115, 116, 117, 120
Offset: 1

Views

Author

Amiram Eldar, Jul 21 2023

Keywords

Comments

Numbers k such that A265745(k) | k.
The positive Jacobsthal numbers, A001045(n) for n >= 1, are terms since their representation in Jacobsthal greedy base is one 1 followed by n-1 0's, so A265745(A001045(n)) = 1 divides A001045(n).

Crossrefs

Programs

  • Mathematica
    greedyJacobNivenQ[n_] := Divisible[n, A265745[n]]; Select[Range[120], greedyJacobNivenQ] (* using A265745[n] *)
  • PARI
    isA364379(n) = !(n % A265745(n)); \\ using A265745(n)

A331819 Positive numbers k such that -k is a negative negabinary-Niven number, i.e., divisible by the sum of digits of its negabinary representation (A027615).

Original entry on oeis.org

2, 3, 4, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 27, 28, 30, 32, 33, 34, 36, 39, 40, 42, 44, 48, 54, 55, 56, 60, 63, 64, 66, 68, 70, 72, 77, 78, 80, 84, 90, 92, 96, 100, 102, 104, 108, 111, 112, 114, 115, 116, 120, 123, 124, 126, 128, 129, 130, 132, 135, 136, 138, 140
Offset: 1

Views

Author

Amiram Eldar, Jan 27 2020

Keywords

Examples

			6 is a term since A039724(-6) = 1110 and 1 + 1 + 1 + 0 = 3 is a divisor of 6.
		

Crossrefs

Programs

  • Mathematica
    negaBinWt[n_] := negaBinWt[n] = If[n==0, 0, negaBinWt[Quotient[n-1, -2]] + Mod[n, 2]]; negaBinNivenQ[n_] := Divisible[n, negaBinWt[-n]]; Select[Range[100], negaBinNivenQ]

A381581 Numbers divisible by the sum of the digits in their Chung-Graham representation (A381579).

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 12, 16, 20, 21, 22, 24, 27, 28, 30, 40, 42, 44, 45, 48, 55, 56, 57, 58, 60, 66, 70, 72, 75, 76, 80, 84, 90, 92, 95, 96, 100, 102, 110, 111, 112, 115, 116, 120, 132, 135, 138, 140, 144, 150, 152, 153, 156, 168, 170, 175, 176, 180, 186, 190, 195, 198
Offset: 1

Views

Author

Amiram Eldar, Feb 28 2025

Keywords

Comments

Numbers k such that A291711(k) divides k.
Analogous to Niven numbers (A005349) with the Chung-Graham representation (A381579) instead of the decimal representation.
A001906(k) = Fibonacci(2*k) is a term for all k >= 1.
If k is not divisible by 3 (A001651), then Fibonacci(2*k) + 1 is a term.

Examples

			4 is a term since A291711(4) = 1 divides 4.
6 is a term since A291711(6) = 2 divides 6.
		

Crossrefs

Subsequences: A381582, A381583, A381584, A381585.
Similar sequences: A005349, A049445, A064150, A328208, A328212.

Programs

  • Mathematica
    f[n_] := f[n] = Fibonacci[2*n]; q[n_] := Module[{s = 0, m = n, k}, While[m > 0, k = 1; While[m > f[k], k++]; If[m < f[k], k--]; If[m >= 2*f[k], s += 2; m -= 2*f[k], s++; m -= f[k]]]; Divisible[n, s]]; Select[Range[200], q]
  • PARI
    mx = 20; fvec = vector(mx, i, fibonacci(2*i)); f(n) = if(n <= mx, fvec[n], fibonacci(2*n));
    isok(n) = {my(s = 0, m = n, k); while(m > 0, k = 1; while(m > f(k), k++); if(m < f(k), k--); if(m >= 2*f(k), s += 2; m -= 2*f(k), s++; m -= f(k))); !(n % s);}

A333620 Numbers that are divisible by the total number of 1's in the dual Zeckendorf representations of all their divisors (A333618).

Original entry on oeis.org

1, 2, 3, 4, 12, 28, 33, 68, 104, 126, 130, 143, 147, 220, 231, 248, 297, 336, 390, 391, 408, 416, 429, 442, 518, 575, 741, 752, 779, 812, 825, 1161, 1170, 1197, 1295, 1323, 1364, 1440, 1462, 1566, 1652, 1677, 1680, 1692, 1701, 1720, 1806, 1817, 1872, 1909, 2210
Offset: 1

Views

Author

Amiram Eldar, Mar 29 2020

Keywords

Examples

			4 is a term since its divisors are {1, 2, 4}, their dual Zeckendorf representations (A104326) are {1, 10, 101}, and their sum of sums of digits is 1 + (1 + 0) + (1 + 0 + 1) = 4 which is a divisor of 4.
		

Crossrefs

Programs

  • Mathematica
    fibTerms[n_] := Module[{k = Ceiling[Log[GoldenRatio, n*Sqrt[5]]], t = n, fr = {}}, While[k > 1, If[t >= Fibonacci[k], AppendTo[fr, 1]; t = t - Fibonacci[k], AppendTo[fr, 0]]; k--]; fr];
    dualZeckSum[n_] := Module[{v = fibTerms[n]}, nv = Length[v]; i = 1; While[i <= nv - 2, If[v[[i]] == 1 && v[[i + 1]] == 0 && v[[i + 2]] == 0, v[[i]] = 0; v[[i + 1]] = 1; v[[i + 2]] = 1; If[i > 2, i -= 3]]; i++]; i = Position[v, _?(# > 0 &)]; If[i == {}, 0, Total[v[[i[[1, 1]] ;; -1]]]]];
    dualZeckDivDigSum[n_] := DivisorSum[n, dualZeckSum[#] &];
    Select[Range[10^3], Divisible[#, dualZeckDivDigSum[#]] &]

A364006 Wythoff-Niven numbers: numbers that are divisible by the number of 1's in their Wythoff representation.

Original entry on oeis.org

1, 3, 4, 6, 7, 8, 10, 12, 15, 18, 20, 21, 24, 26, 28, 32, 35, 39, 40, 42, 45, 47, 51, 52, 54, 55, 56, 60, 68, 72, 76, 80, 84, 86, 88, 90, 91, 98, 100, 102, 105, 117, 120, 123, 125, 135, 136, 138, 141, 143, 144, 156, 164, 168, 172, 174, 176, 178, 180, 188, 192
Offset: 1

Views

Author

Amiram Eldar, Jul 01 2023

Keywords

Comments

Numbers k such that A135818(k) | k.
Includes all the positive even-indexed Fibonacci numbers (A001906), since the Wythoff representation of Fibonacci(2*n), for n >= 1, is 1 followed by n-1 0's.

Crossrefs

Programs

  • Mathematica
    wnQ[n_] := (s = Total[w[n]]) > 0 && Divisible[n, s] (* using the function w[n] from A364005 *)

A364123 Stolarsky-Niven numbers: numbers that are divisible by the number of 1's in their Stolarsky representation (A364121).

Original entry on oeis.org

2, 4, 6, 8, 9, 12, 14, 16, 20, 22, 24, 27, 30, 36, 38, 40, 42, 44, 48, 54, 56, 57, 60, 65, 69, 72, 75, 80, 84, 85, 90, 92, 96, 98, 100, 102, 104, 108, 112, 116, 120, 124, 126, 132, 136, 138, 145, 147, 150, 153, 155, 159, 160, 175, 180, 185, 190, 195, 196, 205
Offset: 1

Views

Author

Amiram Eldar, Jul 07 2023

Keywords

Comments

Numbers k such that A200649(k) | k.
Fibonacci(k) + 1 is a term if k !== 3 (mod 6) (i.e., k is in A047263).

Examples

			4 is a term since its Stolarsky representation, A364121(4) = 10, has one 1 and 4 is divisible by 1.
6 is a term since its Stolarsky representation, A364121(6) = 101, has 2 1's and 6 is divisible by 2.
		

Crossrefs

Programs

  • Mathematica
    stol[n_] := stol[n] = If[n == 1, {}, If[n != Round[Round[n/GoldenRatio]*GoldenRatio], Join[stol[Floor[n/GoldenRatio^2] + 1], {0}], Join[stol[Round[n/GoldenRatio]], {1}]]];
    stolNivQ[n_] := n > 1 && Divisible[n, Total[stol[n]]];
    Select[Range[200], stolNivQ]
  • PARI
    stol(n) = {my(phi=quadgen(5)); if(n==1, [], if(n != round(round(n/phi)*phi), concat(stol(floor(n/phi^2) + 1), [0]), concat(stol(round(n/phi)), [1])));}
    isA364123(n) = n > 1 && !(n % vecsum(stol(n)));

A330712 Numbers k such that F(k) - 1 is divisible by floor((k - 1)/2), where F(k) is the k-th Fibonacci number (A000045).

Original entry on oeis.org

3, 4, 5, 7, 15, 22, 25, 26, 27, 35, 41, 47, 49, 50, 73, 74, 75, 87, 89, 95, 97, 98, 101, 107, 121, 122, 135, 145, 146, 147, 167, 193, 194, 195, 207, 215, 217, 218, 221, 227, 241, 242, 255, 275, 289, 290, 315, 327, 335, 337, 338, 347, 361, 362, 385, 386, 387, 395
Offset: 1

Views

Author

Amiram Eldar, Dec 27 2019

Keywords

Comments

Numbers of the form F(k) - 1 have the same Zeckendorf (A014417) and dual Zeckendorf (A104326) representations: alternating digits of 1 and 0 whose sum is floor((k - 1)/2). Thus, if k is in this sequence then F(k) - 1 is both a Zeckendorf-Niven number (A328208) and a lazy-Fibonacci-Niven number (A328212), i.e., A000071(a(n)) is in A330711.

Examples

			7 is in this sequence since F(7) - 1 = 13 - 1 = 12 is divisible by floor((7 - 1)/2) = 3. The Zeckendorf and dual Zeckendorf representations of 7 are both 1010, whose sum of digits, 2, divides 12. Thus 12 is both a Zeckendorf-Niven number and a lazy-Fibonacci-Niven number.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[3, 400], Divisible[Fibonacci[#] - 1, Floor[(# - 1)/2]] &]

A328216 Weak-Fibonacci-Niven numbers: numbers divisible by the number of terms in at least one representation as a sum of distinct Fibonacci numbers.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 13, 14, 15, 16, 18, 21, 22, 24, 26, 27, 28, 30, 32, 34, 35, 36, 39, 40, 42, 44, 45, 48, 50, 52, 55, 56, 57, 58, 60, 63, 64, 65, 66, 68, 69, 70, 72, 75, 76, 78, 80, 81, 84, 85, 89, 90, 92, 93, 94, 95, 96, 99, 100, 102, 104, 105, 108
Offset: 1

Views

Author

Amiram Eldar, Oct 07 2019

Keywords

Comments

The Fibonacci numbers F(1) = F(2) = 1 can be used at most once in the representation.
Grundman proved that there are infinitely many runs of 6 consecutive weak-Fibonacci-Niven numbers by showing that if m = F(240k) + F(14) + F(9) for k >= 1, then m, m+1, ... m+5 are 6 consecutive weak-Fibonacci-Niven numbers.

Examples

			6 is in the sequence since it can be represented as the sum of 2 Fibonacci numbers, 1 + 5, and 2 is a divisor of 6.
		

Crossrefs

Supersequence of A328208 and A328212.

Programs

  • Mathematica
    m = 10; v = Array[Fibonacci, m, 2]; vm = v[[-1]]; seq = {}; Do[s = Subsets[v, 2^m, {k}]; If[(sum = Total @@ s) <= vm && Divisible[sum, Length @@ s], AppendTo[seq, sum]] , {k, 2, 2^m}]; Union @ seq
Previous Showing 21-30 of 30 results.