cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 58 results. Next

A333943 Numbers k such that the k-th composition in standard order is a reversed necklace.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 15, 16, 17, 18, 19, 21, 23, 31, 32, 33, 34, 35, 36, 37, 39, 41, 42, 43, 45, 47, 63, 64, 65, 66, 67, 68, 69, 71, 73, 74, 75, 77, 79, 81, 83, 85, 87, 91, 95, 127, 128, 129, 130, 131, 132, 133, 135, 136, 137, 138, 139, 141, 143
Offset: 1

Views

Author

Gus Wiseman, Apr 14 2020

Keywords

Comments

A necklace is a finite sequence that is lexicographically minimal among all of its cyclic rotations. Reversed necklaces are different from co-necklaces (A333764).
A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence together with the corresponding reversed necklaces begins:
    1: (1)             32: (6)               69: (4,2,1)
    2: (2)             33: (5,1)             71: (4,1,1,1)
    3: (1,1)           34: (4,2)             73: (3,3,1)
    4: (3)             35: (4,1,1)           74: (3,2,2)
    5: (2,1)           36: (3,3)             75: (3,2,1,1)
    7: (1,1,1)         37: (3,2,1)           77: (3,1,2,1)
    8: (4)             39: (3,1,1,1)         79: (3,1,1,1,1)
    9: (3,1)           41: (2,3,1)           81: (2,4,1)
   10: (2,2)           42: (2,2,2)           83: (2,3,1,1)
   11: (2,1,1)         43: (2,2,1,1)         85: (2,2,2,1)
   15: (1,1,1,1)       45: (2,1,2,1)         87: (2,2,1,1,1)
   16: (5)             47: (2,1,1,1,1)       91: (2,1,2,1,1)
   17: (4,1)           63: (1,1,1,1,1,1)     95: (2,1,1,1,1,1)
   18: (3,2)           64: (7)              127: (1,1,1,1,1,1,1)
   19: (3,1,1)         65: (6,1)            128: (8)
   21: (2,2,1)         66: (5,2)            129: (7,1)
   23: (2,1,1,1)       67: (5,1,1)          130: (6,2)
   31: (1,1,1,1,1)     68: (4,3)            131: (6,1,1)
		

Crossrefs

The non-reversed version is A065609.
The dual version is A328595.
Binary necklaces are A000031.
Necklace compositions are A008965.
Necklaces covering an initial interval are A019536.
Numbers whose prime signature is a necklace are A329138.
Length of co-Lyndon factorization of binary expansion is A329312.
Length of Lyndon factorization of reversed binary expansion is A329313.
All of the following pertain to compositions in standard order (A066099):
- Length is A000120.
- Sum is A070939.
- Runs are counted by A124767.
- Rotational symmetries are counted by A138904.
- Strict compositions are A233564.
- Constant compositions are A272919.
- Lyndon compositions are A275692.
- Co-Lyndon compositions are A326774.
- Aperiodic compositions are A328594.
- Length of Lyndon factorization is A329312.
- Rotational period is A333632.
- Co-necklaces are A333764.
- Length of co-Lyndon factorization is A334029.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    neckQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#1]}]&,Length[q]-1,1,And];
    Select[Range[100],neckQ[Reverse[stc[#]]]&]

A138904 Number of rotational symmetries in the binary expansion of a number.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Max Sills, Apr 03 2008, Apr 04 2008

Keywords

Comments

Mersenne numbers of form (2^n - 1) have n rotational symmetries.
For prime length binary expansions these are the only nontrivial symmetries.
For composite length expansions it seems that when the number of symmetries is nontrivial it is equal to a factor of the length. We're working on an explicit formula.
Discovered in the context of random circulant matrices, examining if there's a correlation between degrees of freedom and number of symmetries in the first row.
When combined with A138954, these two sequences should give a full account of the number of redundant rows in a circulant square matrix with at most two distinct values, where a(n) is the encoding of the first row of the matrix into binary such that value a = 1 and value b = 0.
Discovered on the night of Apr 02, 2008 by Maxwell Sills and Gary Doran.
Conjecture: For binary expansions of length n, there are d(n) distinct values that will show up as symmetries, where d is the divisor function. The symmetry values will be precisely the divisors of n.
Example: for binary expansions of length 12, one sees that d(12) = 6 distinct values show up as symmetries (1, 2, 3, 4, 6, 12).
Conjecture: For numbers whose binary expansion has length n which has proper divisors which are all coprime: There will be only one number of length n with n symmetries. That number is 2^n - 1. For each proper divisor d (excluding 1), you can generate all numbers of length n that have n/d symmetries like so: (2^0 + 2^d + 2^2d ... 2^(n-d)) * a, where 2^(d-1) <= a < (2^d) - 1. The rest of the expansions of length n will have only the trivial symmetry.
Also the number of rotational symmetries of the n-th composition in standard order (graded reverse-lexicographic). This composition (row n of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of n, prepending 0, taking first differences, and reversing again. - Gus Wiseman, Apr 19 2020
From Gus Wiseman, Apr 19 2020: (Start)
Aperiodic compositions are counted by A000740.
Aperiodic binary words are counted by A027375.
The orderless period of prime indices is A052409.
Numbers whose binary expansion is periodic are A121016.
Periodic compositions are counted by A178472.
Period of binary expansion is A302291.
Compositions by sum and number of distinct rotations are A333941.
All of the following pertain to compositions in standard order (A066099):
- Length is A000120.
- Necklaces are A065609.
- Sum is A070939.
- Runs are counted by A124767.
- Strict compositions are A233564.
- Constant compositions are A272919.
- Lyndon compositions are A275692.
- Co-Lyndon compositions are A326774.
- Aperiodic compositions are A328594.
- Reversed co-necklaces are A328595.
- Rotational period is A333632.
- Co-necklaces are A333764.
- Reversed necklaces are A333943.
(End).

Examples

			a(10) = 2 because the binary expansion of 10 is 1010 and it has two rotational symmetries (including identity).
		

Crossrefs

Programs

  • Mathematica
    Table[IntegerLength[n,2]/Length[Union[Array[RotateRight[IntegerDigits[n,2],#]&,IntegerLength[n,2]]]],{n,100}] (* Gus Wiseman, Apr 19 2020 *)

Formula

a(n) = A070939(n)/A302291(n) = A000120(n)/A333632(n). - Gus Wiseman, Apr 19 2020

A333768 Minimum part of the n-th composition in standard order. a(0) = 0.

Original entry on oeis.org

0, 1, 2, 1, 3, 1, 1, 1, 4, 1, 2, 1, 1, 1, 1, 1, 5, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 1, 2, 1, 3, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 2, 1, 3, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Apr 06 2020

Keywords

Comments

One plus the shortest run of 0's after a 1 in the binary expansion of n > 0.
A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The 148th composition in standard order is (3,2,3), so a(148) = 2.
		

Crossrefs

Positions of first appearances (ignoring index 0) are A000079.
Positions of terms > 1 are A022340.
The version for prime indices is A055396.
The maximum part is given by A333766.
All of the following pertain to compositions in standard order (A066099):
- Length is A000120.
- Compositions without 1's are A022340.
- Sum is A070939.
- Product is A124758.
- Runs are counted by A124767.
- Strict compositions are A233564.
- Constant compositions are A272919.
- Runs-resistance is A333628.
- Weakly decreasing compositions are A114994.
- Weakly increasing compositions are A225620.
- Strictly decreasing compositions are A333255.
- Strictly increasing compositions are A333256.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[If[n==0,0,Min@@stc[n]],{n,0,100}]

Formula

For n > 0, a(n) = A333767(n) + 1.

A333940 Number of Lyndon factorizations of the k-th composition in standard order.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 1, 2, 2, 4, 1, 2, 1, 5, 1, 2, 2, 4, 1, 4, 2, 7, 1, 2, 1, 4, 1, 2, 1, 7, 1, 2, 2, 4, 2, 5, 2, 7, 1, 2, 3, 9, 2, 5, 2, 12, 1, 2, 1, 4, 1, 2, 2, 7, 1, 2, 1, 4, 1, 2, 1, 11, 1, 2, 2, 4, 2, 5, 2, 7, 1, 4, 4, 11, 2, 5, 2, 12, 1, 2, 2, 4, 1, 7
Offset: 0

Views

Author

Gus Wiseman, Apr 13 2020

Keywords

Comments

We define the Lyndon product of two or more finite sequences to be the lexicographically maximal sequence obtainable by shuffling the sequences together. For example, the Lyndon product of (231) with (213) is (232131), the product of (221) with (213) is (222131), and the product of (122) with (2121) is (2122121). A Lyndon factorization of a composition c is a multiset of compositions whose Lyndon product is c.
A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
Also the number of multiset partitions of the Lyndon-word factorization of the n-th composition in standard order.

Examples

			We have  a(300) = 5, because the 300th composition (3,2,1,3) has the following Lyndon factorizations:
  ((3,2,1,3))
  ((1,3),(3,2))
  ((2),(3,1,3))
  ((3),(2,1,3))
  ((2),(3),(1,3))
		

Crossrefs

The dual version is A333765.
Binary necklaces are counted by A000031.
Necklace compositions are counted by A008965.
Necklaces covering an initial interval are counted by A019536.
Lyndon compositions are counted by A059966.
Numbers whose reversed binary expansion is a necklace are A328595.
Numbers whose prime signature is a necklace are A329138.
Length of Lyndon factorization of binary expansion is A211100.
Length of co-Lyndon factorization of binary expansion is A329312.
Length of co-Lyndon factorization of reversed binary expansion is A329326.
Length of Lyndon factorization of reversed binary expansion is A329313.
All of the following pertain to compositions in standard order (A066099):
- Length is A000120.
- Necklaces are A065609.
- Sum is A070939.
- Runs are counted by A124767.
- Rotational symmetries are counted by A138904.
- Strict compositions are A233564.
- Constant compositions are A272919.
- Lyndon compositions are A275692.
- Co-Lyndon compositions are A326774.
- Aperiodic compositions are A328594.
- Reversed co-necklaces are A328595.
- Length of Lyndon factorization is A329312.
- Rotational period is A333632.
- Co-necklaces are A333764.
- Dealing are counted by A333939.
- Reversed necklaces are A333943.
- Length of co-Lyndon factorization is A334029.
- Combinatory separations are A334030.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    lynprod[]:={};lynprod[{},b_List]:=b;lynprod[a_List,{}]:=a;lynprod[a_List]:=a;
    lynprod[{x_,a___},{y_,b___}]:=Switch[Ordering[If[x=!=y,{x,y},{lynprod[{a},{x,b}],lynprod[{x,a},{b}]}]],{2,1},Prepend[lynprod[{a},{y,b}],x],{1,2},Prepend[lynprod[{x,a},{b}],y]];
    lynprod[a_List,b_List,c__List]:=lynprod[a,lynprod[b,c]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    dealings[q_]:=Union[Function[ptn,Sort[q[[#]]&/@ptn]]/@sps[Range[Length[q]]]];
    Table[Length[Select[dealings[stc[n]],lynprod@@#==stc[n]&]],{n,0,100}]

Formula

For n > 0, Sum_{k = 2^(n-1)..2^n-1} a(k) = A034691(n).

A329325 Irregular triangle read by rows where row n gives the lengths of the components in the Lyndon factorization of the binary expansion of n with first digit removed.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 3, 1, 4, 2, 1, 1, 2, 2, 3, 1, 4, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 3, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 4, 1, 5, 3, 1, 1, 5, 4, 1, 5, 2, 1
Offset: 1

Views

Author

Gus Wiseman, Nov 11 2019

Keywords

Comments

We define the Lyndon product of two or more finite sequences to be the lexicographically maximal sequence obtainable by shuffling the sequences together. For example, the Lyndon product of (231) with (213) is (232131), the product of (221) with (213) is (222131), and the product of (122) with (2121) is (2122121). A Lyndon word is a finite sequence that is prime with respect to the Lyndon product. Every finite sequence has a unique (orderless) factorization into Lyndon words, and if these factors are arranged in lexicographically decreasing order, their concatenation is equal to their Lyndon product. For example, (1001) has sorted Lyndon factorization (001)(1).

Examples

			Triangle begins:
   1: ()        21: (22)       41: (23)       61: (1112)
   2: (1)       22: (31)       42: (221)      62: (11111)
   3: (1)       23: (4)        43: (5)        63: (11111)
   4: (11)      24: (1111)     44: (311)      64: (111111)
   5: (2)       25: (13)       45: (32)       65: (6)
   6: (11)      26: (121)      46: (41)       66: (51)
   7: (11)      27: (13)       47: (5)        67: (6)
   8: (111)     28: (1111)     48: (11111)    68: (411)
   9: (3)       29: (112)      49: (14)       69: (6)
  10: (21)      30: (1111)     50: (131)      70: (51)
  11: (3)       31: (1111)     51: (14)       71: (6)
  12: (111)     32: (11111)    52: (1211)     72: (3111)
  13: (12)      33: (5)        53: (122)      73: (33)
  14: (111)     34: (41)       54: (131)      74: (51)
  15: (111)     35: (5)        55: (14)       75: (6)
  16: (1111)    36: (311)      56: (11111)    76: (411)
  17: (4)       37: (5)        57: (113)      77: (6)
  18: (31)      38: (41)       58: (1121)     78: (51)
  19: (4)       39: (5)        59: (113)      79: (6)
  20: (211)     40: (2111)     60: (11111)    80: (21111)
For example, the trimmed binary expansion of 41 is (01001), with Lyndon factorization (01)(001), so row 41 is {2,3}.
		

Crossrefs

Row lengths are A211097.
Row sums are A000523.
Keeping the first digit gives A329314.
Positions of singleton rows are A329327.
Binary Lyndon words are counted by A001037 and ranked by A102659.
Numbers whose reversed binary expansion is a Lyndon word are A328596.
Length of the co-Lyndon factorization of the binary expansion is A329312.

Programs

  • Mathematica
    lynQ[q_]:=Array[Union[{q,RotateRight[q,#]}]=={q,RotateRight[q,#]}&,Length[q]-1,1,And];
    lynfac[q_]:=If[Length[q]==0,{},Function[i,Prepend[lynfac[Drop[q,i]],Take[q,i]]][Last[Select[Range[Length[q]],lynQ[Take[q,#1]]&]]]];
    Table[Length/@lynfac[Rest[IntegerDigits[n,2]]],{n,100}]

A333765 Number of co-Lyndon factorizations of the k-th composition in standard order.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 1, 2, 2, 4, 5, 1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 4, 2, 4, 4, 7, 7, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 3, 1, 2, 2, 2, 1, 2, 2, 2, 2, 5, 2, 5, 2, 4, 4, 9, 4, 7, 7, 12, 11, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 2, 4, 1
Offset: 0

Views

Author

Gus Wiseman, Apr 13 2020

Keywords

Comments

We define the co-Lyndon product of two or more finite sequences to be the lexicographically minimal sequence obtainable by shuffling the sequences together. For example, the co-Lyndon product of (2,3,1) with (2,1,3) is (2,1,2,3,1,3), the product of (2,2,1) with (2,1,3) is (2,1,2,2,1,3), and the product of (1,2,2) with (2,1,2,1) is (1,2,1,2,1,2,2). A co-Lyndon factorization of a composition c is a multiset of compositions whose co-Lyndon product is c.
A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
Also the number of multiset partitions of the co-Lyndon-word factorization of the n-th composition in standard order.

Examples

			The a(54) = 5, a(61) = 7, and a(237) = 9 factorizations:
  ((1,2,1,2))      ((1,1,1,2,1))        ((1,1,2,1,2,1))
  ((1),(2,1,2))    ((1),(1,1,2,1))      ((1),(1,2,1,2,1))
  ((1,2),(2,1))    ((1,1),(1,2,1))      ((1,1),(2,1,2,1))
  ((2),(1,2,1))    ((2,1),(1,1,1))      ((1,2,1),(1,2,1))
  ((1),(2),(2,1))  ((1),(1),(1,2,1))    ((2,1),(1,1,2,1))
                   ((1),(1,1),(2,1))    ((1),(1),(2,1,2,1))
                   ((1),(1),(1),(2,1))  ((1,1),(2,1),(2,1))
                                        ((1),(2,1),(1,2,1))
                                        ((1),(1),(2,1),(2,1))
		

Crossrefs

The dual version is A333940.
Binary necklaces are counted by A000031.
Necklace compositions are counted by A008965.
Necklaces covering an initial interval are counted by A019536.
Lyndon compositions are counted by A059966.
Numbers whose reversed binary expansion is a necklace are A328595.
Numbers whose prime signature is a necklace are A329138.
Length of Lyndon factorization of binary expansion is A211100.
Length of co-Lyndon factorization of binary expansion is A329312.
Length of co-Lyndon factorization of reversed binary expansion is A329326.
Length of Lyndon factorization of reversed binary expansion is A329313.
All of the following pertain to compositions in standard order (A066099):
- Length is A000120.
- Necklaces are A065609.
- Sum is A070939.
- Runs are counted by A124767.
- Rotational symmetries are counted by A138904.
- Strict compositions are A233564.
- Constant compositions are A272919.
- Lyndon compositions are A275692.
- Co-Lyndon compositions are A326774.
- Aperiodic compositions are A328594.
- Reversed co-necklaces are A328595.
- Length of Lyndon factorization is A329312.
- Rotational period is A333632.
- Co-necklaces are A333764.
- Dealings are counted by A333939.
- Reversed necklaces are A333943.
- Length of co-Lyndon factorization is A334029.
- Combinatory separations are A334030.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    colynprod[]:={};colynprod[{},b_List]:=b;colynprod[a_List,{}]:=a;colynprod[a_List]:=a;
    colynprod[{x_,a___},{y_,b___}]:=Switch[Ordering[If[x=!=y,{x,y},{colynprod[{a},{x,b}],colynprod[{x,a},{b}]}]],{1,2},Prepend[colynprod[{a},{y,b}],x],{2,1},Prepend[colynprod[{x,a},{b}],y]];
    colynprod[a_List,b_List,c__List]:=colynprod[a,colynprod[b,c]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    dealings[q_]:=Union[Function[ptn,Sort[q[[#]]&/@ptn]]/@sps[Range[Length[q]]]];
    Table[Length[Select[dealings[stc[n]],colynprod@@#==stc[n]&]],{n,0,100}]

Formula

For n > 0, Sum_{k = 2^(n-1)..2^n-1} a(k) = A034691(n).

A257250 Numbers n for which A256999(n) = n; numbers that cannot be made any larger by rotating (by one or more steps) the non-msb bits of their binary representation (with A080541 or A080542).

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 7, 8, 12, 14, 15, 16, 24, 26, 28, 30, 31, 32, 48, 52, 56, 58, 60, 62, 63, 64, 96, 100, 104, 106, 112, 114, 116, 118, 120, 122, 124, 126, 127, 128, 192, 200, 208, 212, 224, 226, 228, 232, 234, 236, 240, 242, 244, 246, 248, 250, 252, 254, 255, 256, 384, 392, 400, 416, 420, 424, 426, 448, 450
Offset: 0

Views

Author

Antti Karttunen, May 16 2015

Keywords

Comments

These correspond to the maximal (lexicographically largest) representatives selected from each equivalence class of binary necklaces. See the last example.
Indexing starts from zero, because a(0) = 0 is a special case.
If k is a member then so also is 2*k, i.e., k with 0 appended to the end of its binary representation.
If k is a member then so also is A004755(k), i.e., k with 1 prepended to the front of its binary representation.
One obtains A065609 if one erases the most significant bit of each term [as A053645(a(n))] and then discards any zero-terms produced from the terms that originally were powers of two (A000079).
First differs from A328607 in lacking 108, with binary expansion 1101100. If we define a dual-necklace to be a finite sequence that is lexicographically maximal (not minimal) among all of its cyclic rotations, these are numbers whose binary expansion, without the most significant digit, is a dual-necklace. - Gus Wiseman, Nov 04 2019

Examples

			For n = 5, with binary representation "101", if we rotate other bits than the most significant bit (that is, only the two rightmost digits "01") one step to either direction, we get "110" = 6 > 5, so 5 can be made larger by such rotations, and thus is NOT included in this sequence.
For n = 6, with binary representation "110", no such rotation will yield a larger number, and thus 6 is included in this sequence.
For n = 28, with binary representation "11100", if we rotate non-msb bits towards right, we get additional numbers 22, 19 and 25 (with binary representations "10110", "10011", "11001") before coming to 28 again, and 28 is the largest of these numbers, thus 28 is included in this sequence.
  Also, if we discard the most significant bit of each and consider them just as binary strings, then A053645(28) = 12 is the lexicographically largest representative of {"1100", "0110", "0011", "1001"}, which is the complete set of representatives for a particular equivalence class of binary necklaces, obtained by rotating all bits of binary string "1100" successively towards right or left.
		

Crossrefs

Complement: A257739.
Odd terms: A000225.
Subsequence of A065609.
Subsequence: A258003.
The non-dual version is A328668.
The version involving all digits is A065609.
The non-dual reversed version is A328607.
Numbers whose reversed binary expansion is a necklace are A328595.
Binary necklaces are A000031.
Necklace compositions are A008965.

Programs

  • Mathematica
    reckQ[q_]:=Array[OrderedQ[{RotateRight[q,#],q}]&,Length[q]-1,1,And];
    Select[Range[0,110],#<=1||reckQ[Rest[IntegerDigits[#,2]]]&] (* Gus Wiseman, Nov 04 2019 *)

A334029 Length of the co-Lyndon factorization of the k-th composition in standard order.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 1, 2, 2, 3, 4, 1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 3, 2, 3, 3, 4, 5, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 3, 1, 2, 2, 2, 1, 2, 2, 2, 2, 3, 2, 3, 2, 3, 3, 4, 3, 4, 4, 5, 6, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 2, 3, 1, 2
Offset: 0

Views

Author

Gus Wiseman, Apr 14 2020

Keywords

Comments

We define the co-Lyndon product of two or more finite sequences to be the lexicographically minimal sequence obtainable by shuffling the sequences together. For example, the co-Lyndon product of (2,3,1) with (2,1,3) is (2,1,2,3,1,3), the product of (2,2,1) with (2,1,3) is (2,1,2,2,1,3), and the product of (1,2,2) with (2,1,2,1) is (1,2,1,2,1,2,2). A co-Lyndon word is a finite sequence that is prime with respect to the co-Lyndon product. Equivalently, a co-Lyndon word is a finite sequence that is lexicographically strictly greater than all of its cyclic rotations. Every finite sequence has a unique (orderless) factorization into co-Lyndon words, and if these factors are arranged in a certain order, their concatenation is equal to their co-Lyndon product. For example, (1,0,0,1) has co-Lyndon factorization {(1),(1,0,0)}.
A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The 441st composition in standard order is (1,2,1,1,3,1), with co-Lyndon factorization {(1),(3,1),(2,1,1)}, so a(441) = 3.
		

Crossrefs

The dual version is A329312.
The version for binary expansion is (also) A329312.
The version for reversed binary expansion is A329326.
Binary Lyndon/co-Lyndon words are counted by A001037.
Necklaces covering an initial interval are A019536.
Lyndon/co-Lyndon compositions are counted by A059966
Length of Lyndon factorization of binomial expansion is A211100.
Numbers whose prime signature is a necklace are A329138.
Length of Lyndon factorization of reversed binary expansion is A329313.
A list of all binary co-Lyndon words is A329318.
All of the following pertain to compositions in standard order (A066099):
- Length is A000120.
- Necklaces are A065609.
- Sum is A070939.
- Runs are counted by A124767.
- Rotational symmetries are counted by A138904.
- Strict compositions are A233564.
- Constant compositions are A272919.
- Lyndon compositions are A275692.
- Co-Lyndon compositions are A326774.
- Aperiodic compositions are A328594.
- Reversed co-necklaces are A328595.
- Rotational period is A333632.
- Co-necklaces are A333764.
- Co-Lyndon factorizations are counted by A333765.
- Lyndon factorizations are counted by A333940.
- Reversed necklaces are A333943.
- Co-necklaces are A334028.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    colynQ[q_]:=Length[q]==0||Array[Union[{RotateRight[q,#1],q}]=={RotateRight[q,#1],q}&,Length[q]-1,1,And];
    colynfac[q_]:=If[Length[q]==0,{},Function[i,Prepend[colynfac[Drop[q,i]],Take[q,i]]][Last[Select[Range[Length[q]],colynQ[Take[q,#1]]&]]]]
    Table[Length[colynfac[stc[n]]],{n,0,100}]

A328593 Numbers whose binary indices have no consecutive divisible parts.

Original entry on oeis.org

0, 1, 2, 4, 6, 8, 12, 14, 16, 18, 20, 22, 24, 28, 30, 32, 40, 44, 46, 48, 50, 52, 54, 56, 60, 62, 64, 66, 68, 70, 72, 76, 78, 80, 82, 84, 86, 88, 92, 94, 96, 104, 108, 110, 112, 114, 116, 118, 120, 124, 126, 128, 132, 134, 144, 146, 148, 150, 152, 156, 158, 160
Offset: 1

Views

Author

Gus Wiseman, Oct 21 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.

Examples

			The sequence of terms together with their binary expansions and binary indices begins:
   0:      0 ~ {}
   1:      1 ~ {1}
   2:     10 ~ {2}
   4:    100 ~ {3}
   6:    110 ~ {2,3}
   8:   1000 ~ {4}
  12:   1100 ~ {3,4}
  14:   1110 ~ {2,3,4}
  16:  10000 ~ {5}
  18:  10010 ~ {2,5}
  20:  10100 ~ {3,5}
  22:  10110 ~ {2,3,5}
  24:  11000 ~ {4,5}
  28:  11100 ~ {3,4,5}
  30:  11110 ~ {2,3,4,5}
  32: 100000 ~ {6}
  40: 101000 ~ {4,6}
  44: 101100 ~ {3,4,6}
  46: 101110 ~ {2,3,4,6}
  48: 110000 ~ {5,6}
  50: 110010 ~ {2,5,6}
		

Crossrefs

The version for prime indices is A328603.
Numbers with no successive binary indices are A003714.
Partitions with no consecutive divisible parts are A328171.
Compositions without consecutive divisible parts are A328460.

Programs

  • Mathematica
    Select[Range[0,100],!MatchQ[Join@@Position[Reverse[IntegerDigits[#,2]],1],{_,x_,y_,_}/;Divisible[y,x]]&]

A302291 a(n) is the period of the binary expansion of n.

Original entry on oeis.org

1, 1, 2, 1, 3, 3, 3, 1, 4, 4, 2, 4, 4, 4, 4, 1, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 1, 6, 6, 6, 6, 3, 6, 6, 6, 6, 6, 2, 6, 6, 3, 6, 6, 6, 6, 6, 6, 6, 6, 3, 6, 6, 6, 6, 6, 6, 6, 6, 1, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7
Offset: 0

Views

Author

Rémy Sigrist, Apr 04 2018

Keywords

Comments

Zero is assumed to be represented as 0; otherwise, leading zeros are ignored.
See A302295 for the variant where leading zeros are allowed.

Examples

			The first terms, alongside the binary expansion of n with periodic part in parentheses, are:
  n  a(n)    bin(n)
  -- ----    ------
   0    1    (0)
   1    1    (1)
   2    2    (10)
   3    1    (1)(1)
   4    3    (100)
   5    3    (101)
   6    3    (110)
   7    1    (1)(1)(1)
   8    4    (1000)
   9    4    (1001)
  10    2    (10)(10)
  11    4    (1011)
  12    4    (1100)
  13    4    (1101)
  14    4    (1110)
  15    1    (1)(1)(1)(1)
  16    5    (10000)
  17    5    (10001)
  18    5    (10010)
  19    5    (10011)
  20    5    (10100)
		

Crossrefs

Aperiodic compositions are counted by A000740.
Aperiodic binary words are counted by A027375.
The orderless period of prime indices is A052409.
Numbers whose binary expansion is periodic are A121016.
Periodic compositions are counted by A178472.
Numbers whose prime signature is aperiodic are A329139.
Compositions by number of distinct rotations are A333941.
All of the following pertain to compositions in standard order (A066099):
- Length is A000120.
- Necklaces are A065609.
- Sum is A070939.
- Runs are counted by A124767.
- Rotational symmetries are counted by A138904.
- Strict compositions are A233564.
- Constant compositions are A272919.
- Lyndon compositions are A275692.
- Co-Lyndon compositions are A326774.
- Aperiodic compositions are A328594.
- Rotational period is A333632.
- Co-necklaces are A333764.
- Reversed necklaces are A333943.

Programs

  • Mathematica
    Table[If[n==0,1,Length[Union[Array[RotateRight[IntegerDigits[n,2],#]&,IntegerLength[n,2]]]]],{n,0,50}] (* Gus Wiseman, Apr 19 2020 *)
  • PARI
    a(n) = my (l=max(1, #binary(n))); fordiv (l, w, if (#Set(digits(n, 2^w))<=1, return (w)))

Formula

a(n) = A070939(n) / A138904(n).
a(2^n) = n + 1 for any n >= 0.
a(2^n - 1) = 1 for any n >= 0.
a(A020330(n)) = a(n) for any n > 0.
Previous Showing 21-30 of 58 results. Next