cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A160892 a(n) = ((2^b-1)/phi(n))*Sum_{d|n} Moebius(n/d)*d^(b-1) for b = 4.

Original entry on oeis.org

15, 105, 195, 420, 465, 1365, 855, 1680, 1755, 3255, 1995, 5460, 2745, 5985, 6045, 6720, 4605, 12285, 5715, 13020, 11115, 13965, 8295, 21840, 11625, 19215, 15795, 23940, 13065, 42315, 14895, 26880, 25935, 32235, 26505, 49140, 21105, 40005, 35685, 52080, 25845
Offset: 1

Views

Author

N. J. A. Sloane, Nov 19 2009

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^2 + p + 1)*p^(2*e - 2); a[1] = 15; a[n_] := 15*Times @@ f @@@ FactorInteger[n]; Array[a, 40] (* Amiram Eldar, Nov 08 2022 *)
  • PARI
    a(n) = {my(f = factor(n)); 15 * prod(i = 1, #f~, (f[i,1]^2 + f[i,1] + 1)*f[i,1]^(2*f[i,2] - 2));} \\ Amiram Eldar, Nov 08 2022

Formula

a(n) = 15*A160889(n). - R. J. Mathar, Feb 07 2011
From Amiram Eldar, Nov 08 2022: (Start)
Sum_{k=1..n} a(k) ~ c * n^3, where c = 5 * Product_{p prime} (1 + 1/p^2 + 1/p^3) = 5 * A330595 = 8.7446649892... .
Sum_{k>=1} 1/a(k) = (zeta(2)*zeta(3)/15) * Product_{p prime} (1 - 2/p^3 + 1/p^5) = 0.09339604419... . (End)

A340066 Decimal expansion of the Product_{p>=3} 1+p^2/((p-1)^2*(p+1)^2) where p are successive prime numbers A000040.

Original entry on oeis.org

1, 2, 5, 3, 6, 1, 7, 9, 4, 5, 0, 0, 7, 2, 3, 5, 8, 9, 0, 0, 1, 4, 4, 7, 1, 7, 8, 0, 0, 2, 8, 9, 4, 3, 5, 6, 0, 0, 5, 7, 8, 8, 7, 1, 2, 0, 1, 1, 5, 7, 7, 4, 2, 4, 0, 2, 3, 1, 5, 4, 8, 4, 8, 0, 4, 6, 3, 0, 9, 6, 9, 6, 0, 9, 2, 6, 1, 9, 3, 9, 2, 1, 8, 5, 2, 3, 8, 7, 8, 4, 3, 7, 0, 4, 7, 7, 5, 6, 8, 7, 4, 0, 9, 5, 5
Offset: 1

Views

Author

Artur Jasinski, Dec 28 2020

Keywords

Comments

This is a rational number.
This constant does not belong to the infinite series of prime number products of the form: Product_{p>=2} (p^(2*n)-1)/(p^(2*n)+1),
which are rational numbers equal to zeta(4*n)/zeta^2(2*n) = A114362(n+1)/A114363(n+1).
This number has decimal period length 230:
1.25(3617945007235890014471780028943560057887120115774240231548480463096960
9261939218523878437047756874095513748191027496382054992764109985528219
9710564399421128798842257597684515195369030390738060781476121562952243
12590448625180897250).

Examples

			1.25361794500723589001447178...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[3465/2764, 105]][[1]]
  • PARI
    default(realprecision, 105)
    prodeulerrat(1+p^2/((p-1)^2*(p+1)^2),1,3)

Formula

Equals 3465/2764 = 3^2*5*7*11/(2^2*691).
Equals Product_{n>=2} 1+A000040(n)^2/A084920(n)^2.
Equals (9/13)*A340065.
Previous Showing 11-12 of 12 results.