cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A364218 Starts of runs of 3 consecutive integers that are Jacobsthal-Niven numbers (A364216).

Original entry on oeis.org

1, 2, 14, 42, 43, 44, 86, 182, 544, 686, 846, 854, 1014, 1375, 1384, 1504, 1624, 2105, 2190, 2315, 2358, 2731, 2732, 2763, 2774, 2824, 3243, 3534, 3702, 4205, 4878, 5046, 5408, 5462, 5643, 5663, 6222, 6390, 6935, 7566, 7734, 7928, 8224, 8704, 8910, 9078, 9368
Offset: 1

Views

Author

Amiram Eldar, Jul 14 2023

Keywords

Crossrefs

Programs

  • Mathematica
    consecJacobsthalNiven[10^4, 3] (* using the function from A364217 *)
  • PARI
    lista(10^4, 3) \\ using the function from A364217

A364381 Starts of runs of 3 consecutive integers that are greedy Jacobsthal-Niven numbers (A364379).

Original entry on oeis.org

1, 2, 3, 4, 8, 9, 10, 14, 20, 26, 42, 43, 44, 84, 85, 86, 104, 115, 170, 182, 304, 344, 362, 414, 544, 682, 686, 692, 784, 854, 1014, 1370, 1384, 1504, 1673, 1685, 1706, 2224, 2315, 2358, 2730, 2731, 2732, 2763, 2774, 3243, 3594, 3702, 4144, 4688, 4864, 5046, 5408
Offset: 1

Views

Author

Amiram Eldar, Jul 21 2023

Keywords

Crossrefs

Programs

  • Mathematica
    consecGreedyJN[5500, 3] (* using the function consecGreedyJN from A364380 *)
  • PARI
    lista(5500, 3) \\ using the function lista from A364380

A364008 Starts of runs of 3 consecutive integers that are Wythoff-Niven numbers (A364006).

Original entry on oeis.org

6, 54, 374, 375, 978, 979, 14695, 15694, 17708, 17709, 34990, 36476, 38374, 41699, 45304, 75944, 85149, 93104, 113463, 114560, 116170, 117754, 120274, 121371, 203983, 221804, 250118, 259819, 270214, 270477, 275526, 276912, 288125, 297241, 297515, 299824, 309440
Offset: 1

Views

Author

Amiram Eldar, Jul 01 2023

Keywords

Crossrefs

Programs

  • Mathematica
    seq[10, 3] (* generates the first 10 terms using the function seq[count, nConsec] from A364007 *)

A364125 Starts of runs of 3 consecutive integers that are Stolarsky-Niven numbers (A364123).

Original entry on oeis.org

1419, 2680, 6984, 18765, 20383, 28390, 48697, 55560, 69056, 121913, 125340, 125341, 125739, 133614, 135189, 136409, 140789, 147563, 150138, 155518, 157068, 171819, 317933, 318188, 319395, 323685, 339723, 340846, 349326, 356290, 371041, 389010, 392903, 393809, 400608
Offset: 1

Views

Author

Amiram Eldar, Jul 07 2023

Keywords

Crossrefs

Programs

  • Mathematica
    seq[10, 3] (* generates the first 10 terms, using the function seq[count, nConsec] from A364124 *)
  • PARI
    lista(10, 3) \\ generates the first 10 terms, using the function lista(count, nConsec) from A364124

A331090 Positive numbers k such that -k, -(k + 1), and -(k + 2) are 3 consecutive negative negaFibonacci-Niven numbers (A331088).

Original entry on oeis.org

1, 2, 20, 54, 55, 56, 110, 376, 398, 974, 986, 1084, 1744, 2464, 2524, 3304, 3870, 5223, 5718, 6095, 6124, 6184, 6663, 6764, 6844, 7142, 7684, 9035, 9124, 10590, 11598, 11975, 12606, 13444, 13504, 14284, 14915, 17164, 17643, 17710, 17714, 17824, 17884, 18698, 18905, 19494, 23191, 24243, 24785, 25542, 26382, 27390, 29644, 34278, 35464
Offset: 1

Views

Author

Amiram Eldar, Jan 08 2020

Keywords

Comments

Numbers of the form F(6*k + 2) - 1 and F(6*k + 4) - 1, where F(m) is the m-th Fibonacci number, are terms.
If m is of the form F(k) - 1, where k > 2 is congruent to {2, 10} mod 24, then {-m, -(m + 1), -(m + 2), -(m + 3), -(m + 4)} are 5 consecutive negative negaFibonacci-Niven numbers.

Crossrefs

Programs

  • Mathematica
    ind[n_] := Floor[Log[Abs[n]*Sqrt[5] + 1/2]/Log[GoldenRatio]];
    f[1] = 1; f[n_] := If[n > 0, i = ind[n - 1]; If[EvenQ[i], i++]; i, i = ind[-n]; If[OddQ[i], i++]; i];
    negaFibTermsNum[n_] := Module[{k = n, s = 0}, While[k != 0, i = f[k]; s += 1; k -= Fibonacci[-i]]; s];
    negFibQ[n_] := Divisible[n, negaFibTermsNum[-n]];
    nConsec = 3; neg = negFibQ /@ Range[nConsec]; seq = {}; c = 0;
    k = nConsec+1; While[c < 55, If[And @@ neg, c++; AppendTo[seq, k - nConsec]];neg = Join[Rest[neg], {negFibQ[k]}]; k++]; seq

A331823 Positive numbers k such that -k, -(k + 1), and -(k + 2) are 3 consecutive negative negabinary-Niven numbers (A331728).

Original entry on oeis.org

2, 8, 32, 54, 114, 128, 174, 234, 294, 370, 413, 414, 474, 512, 534, 580, 654, 774, 894, 954, 1000, 1014, 1134, 1430, 1734, 1794, 1840, 1854, 1914, 1974, 2034, 2048, 2093, 2094, 2154, 2214, 2334, 2574, 2680, 2694, 2814, 2870, 3054, 3100, 3520, 3773, 3774, 3834
Offset: 1

Views

Author

Amiram Eldar, Jan 27 2020

Keywords

Crossrefs

Programs

  • Mathematica
    negaBinWt[n_] := negaBinWt[n] = If[n == 0, 0, negaBinWt[Quotient[n - 1, -2]] + Mod[n, 2]]; negaBinNivenQ[n_] := Divisible[n, negaBinWt[-n]]; nConsec = 3; neg = negaBinNivenQ /@ Range[nConsec]; seq = {}; c = 0; k = nConsec+1; While[c < 50, If[And @@ neg, c++; AppendTo[seq, k - nConsec]]; neg = Join[Rest[neg], {negaBinNivenQ[k]}]; k++]; seq
Previous Showing 11-16 of 16 results.