A331937
a(1) = 1; a(2) = 2; a(n + 1) = 2 * prime(a(n)).
Original entry on oeis.org
1, 2, 6, 26, 202, 2462, 43954, 1063462, 33076174, 1270908802, 58596709306, 3170266564862, 197764800466826, 14024066291995502, 1117378164606478094
Offset: 1
The sequence of terms together with their associated trees begins:
1: o
2: (o)
6: (o(o))
26: (o(o(o)))
202: (o(o(o(o))))
2462: (o(o(o(o(o)))))
The semi-identity tree version is
A331681.
Not requiring an identity tree gives
A331873.
Not requiring local disjointness gives
A331963.
Not requiring lone-child-avoidance gives
A316494.
MG-numbers of semi-lone-child-avoiding rooted trees are
A331935.
Cf.
A007097,
A061775,
A276625,
A316471,
A316495,
A316694,
A331679,
A331683,
A331686,
A331872,
A331934,
A331936,
A331964,
A331965.
A331684
Number of locally disjoint enriched identity p-trees of weight n.
Original entry on oeis.org
1, 1, 2, 3, 6, 14, 30, 68, 157, 379, 901, 2229, 5488, 13846, 34801, 89368, 228186, 592943, 1533511, 4026833
Offset: 1
The a(1) = 1 through a(6) = 14 enriched p-trees:
1 2 3 4 5 6
(21) (31) (32) (42)
((21)1) (41) (51)
((21)2) (321)
((31)1) ((21)3)
(((21)1)1) ((31)2)
((32)1)
(3(21))
((41)1)
((21)21)
(((21)1)2)
(((21)2)1)
(((31)1)1)
((((21)1)1)1)
The non-identity version is
A331687.
Locally disjoint identity trees are
A316471.
Enriched identity p-trees are
A331875, with locally disjoint case
A331687.
Cf.
A000669,
A005804,
A141268,
A300660,
A316696,
A316697,
A331678,
A331679,
A331680,
A331683,
A331686,
A331783,
A331874.
-
disjointQ[u_]:=Apply[And,Outer[#1==#2||Intersection[#1,#2]=={}&,u,u,1],{0,1}];
ldeip[n_]:=Prepend[Select[Join@@Table[Tuples[ldeip/@p],{p,Rest[IntegerPartitions[n]]}],UnsameQ@@#&&disjointQ[DeleteCases[#,_Integer]]&],n];
Table[Length[ldeip[n]],{n,12}]
Comments