cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A331937 a(1) = 1; a(2) = 2; a(n + 1) = 2 * prime(a(n)).

Original entry on oeis.org

1, 2, 6, 26, 202, 2462, 43954, 1063462, 33076174, 1270908802, 58596709306, 3170266564862, 197764800466826, 14024066291995502, 1117378164606478094
Offset: 1

Views

Author

Gus Wiseman, Feb 07 2020

Keywords

Comments

Also Matula-Goebel numbers of semi-lone-child-avoiding locally disjoint rooted identity trees. A rooted tree is locally disjoint if no child of any vertex has branches overlapping the branches of any other (inequivalent) child of the same vertex. It is semi-lone-child-avoiding if there are no vertices with exactly one child unless that child is an endpoint/leaf. In an identity tree, the branches of any given vertex are all distinct. The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.

Examples

			The sequence of terms together with their associated trees begins:
     1: o
     2: (o)
     6: (o(o))
    26: (o(o(o)))
   202: (o(o(o(o))))
  2462: (o(o(o(o(o)))))
		

Crossrefs

The semi-identity tree version is A331681.
Not requiring an identity tree gives A331873.
Not requiring local disjointness gives A331963.
Not requiring lone-child-avoidance gives A316494.
MG-numbers of semi-lone-child-avoiding rooted trees are A331935.

Programs

  • Mathematica
    msiQ[n_]:=n==1||n==2||!PrimeQ[n]&&SquareFreeQ[n]&&(PrimePowerQ[n]||CoprimeQ@@PrimePi/@First/@FactorInteger[n])&&And@@msiQ/@PrimePi/@First/@FactorInteger[n];
    Select[Range[1000],msiQ]

Formula

Intersection of A276625 (identity), A316495 (locally disjoint), and A331935 (semi-lone-child-avoiding).

Extensions

a(14)-a(15) from Giovanni Resta, Feb 10 2020

A331684 Number of locally disjoint enriched identity p-trees of weight n.

Original entry on oeis.org

1, 1, 2, 3, 6, 14, 30, 68, 157, 379, 901, 2229, 5488, 13846, 34801, 89368, 228186, 592943, 1533511, 4026833
Offset: 1

Views

Author

Gus Wiseman, Jan 31 2020

Keywords

Comments

A locally disjoint enriched identity p-tree of weight n is either the number n itself or a finite sequence of distinct non-overlapping locally disjoint enriched identity p-trees whose weights are weakly decreasing and sum to n.

Examples

			The a(1) = 1 through a(6) = 14 enriched p-trees:
  1  2  3     4        5           6
        (21)  (31)     (32)        (42)
              ((21)1)  (41)        (51)
                       ((21)2)     (321)
                       ((31)1)     ((21)3)
                       (((21)1)1)  ((31)2)
                                   ((32)1)
                                   (3(21))
                                   ((41)1)
                                   ((21)21)
                                   (((21)1)2)
                                   (((21)2)1)
                                   (((31)1)1)
                                   ((((21)1)1)1)
		

Crossrefs

The orderless version is A316694.
The non-identity version is A331687.
Identity trees are A004111.
P-trees are A196545.
Enriched p-trees are A289501.
Locally disjoint identity trees are A316471.
Enriched identity p-trees are A331875, with locally disjoint case A331687.

Programs

  • Mathematica
    disjointQ[u_]:=Apply[And,Outer[#1==#2||Intersection[#1,#2]=={}&,u,u,1],{0,1}];
    ldeip[n_]:=Prepend[Select[Join@@Table[Tuples[ldeip/@p],{p,Rest[IntegerPartitions[n]]}],UnsameQ@@#&&disjointQ[DeleteCases[#,_Integer]]&],n];
    Table[Length[ldeip[n]],{n,12}]
Previous Showing 11-12 of 12 results.