cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A364380 Numbers k such that k and k+1 are both greedy Jacobsthal-Niven numbers (A364379).

Original entry on oeis.org

1, 2, 3, 4, 5, 8, 9, 10, 11, 14, 15, 20, 21, 26, 27, 32, 42, 43, 44, 45, 51, 56, 68, 75, 84, 85, 86, 87, 92, 99, 104, 105, 111, 115, 116, 125, 128, 135, 144, 155, 170, 171, 176, 182, 183, 195, 204, 213, 219, 224, 260, 264, 267, 275, 304, 305, 324, 329, 341, 344
Offset: 1

Views

Author

Amiram Eldar, Jul 21 2023

Keywords

Comments

The positive Jacobsthal numbers, A001045(n) for n >= 1, are terms since their representation in Jacobsthal greedy base is one 1 followed by n-1 0's, so A265745(A001045(n)) = 1 divides A001045(n), and the representation of A001045(n) + 1 is 2 if n <= 2 and otherwise n-3 0's between two 1's, so A265745(A001045(n) + 1) = 2 which divides A001045(n) + 1.

Crossrefs

Programs

  • Mathematica
    consecGreedyJN[kmax_, len_] := Module[{m = 1, c = Table[False, {len}], s = {}}, Do[c = Join[Rest[c], {greedyJacobNivenQ[k]}]; If[And @@ c, AppendTo[s, k - len + 1]], {k, 1, kmax}]; s]; consecGreedyJN[350, 2] (* using the function greedyJacobNivenQ[n] from A364379 *)
  • PARI
    lista(kmax, len) = {my(c = vector(len)); for(k = 1, kmax, c = concat(vecextract(c, "^1"), isA364379(k)); if(vecsum(c) == len, print1(k-len+1, ", ")));} \\ using the function isA364379(n) from A364379
    lista(350, 2)

A364007 Numbers k such that k and k+1 are both Wythoff-Niven numbers (A364006).

Original entry on oeis.org

3, 6, 7, 20, 39, 51, 54, 55, 90, 135, 143, 294, 305, 321, 356, 365, 369, 374, 375, 376, 784, 800, 924, 978, 979, 980, 986, 1904, 1945, 1970, 2043, 2199, 2232, 2289, 2394, 2424, 2439, 2499, 2525, 2562, 2580, 2583, 4185, 4598, 4707, 4774, 4790, 4796, 4879, 5004
Offset: 1

Views

Author

Amiram Eldar, Jul 01 2023

Keywords

Comments

A035508(n) = Fibonacci(2*n+2) - 1 is a term for n >= 2 since A135818(Fibonacci(2*n+2) - 1) = A135818(Fibonacci(2*n+2)) = 1.

Crossrefs

Programs

  • Mathematica
    seq[count_, nConsec_] := Module[{cn = wnQ /@ Range[nConsec], s = {}, c = 0, k = nConsec + 1}, While[c < count, If[And @@ cn, c++; AppendTo[s, k - nConsec]]; cn = Join[Rest[cn], {wnQ[k]}]; k++]; s]; seq[50, 2] (* using the function wnQ[n] from A364006 *)

A364124 Numbers k such that k and k+1 are both Stolarsky-Niven numbers (A364123).

Original entry on oeis.org

8, 56, 84, 159, 195, 224, 384, 399, 405, 995, 1140, 1224, 1245, 1295, 1309, 1419, 1420, 1455, 1474, 1507, 2585, 2597, 2600, 2680, 2681, 2727, 2744, 2750, 2799, 2855, 3122, 3311, 3339, 3345, 3618, 3707, 3795, 4004, 6770, 6774, 6984, 6985, 7014, 7074, 7154, 7405
Offset: 1

Views

Author

Amiram Eldar, Jul 07 2023

Keywords

Crossrefs

Programs

  • Mathematica
    seq[count_, nConsec_] := Module[{cn = stolNivQ /@ Range[nConsec], s = {}, c = 0, k = nConsec + 1}, While[c < count, If[And @@ cn, c++; AppendTo[s, k - nConsec]]; cn = Join[Rest[cn], {stolNivQ[k]}]; k++]; s]; seq[50, 2] (* using the function stolNivQ[n] from A364123 *)
  • PARI
    lista(count, nConsec) = {my(cn = vector(nConsec, i, isStolNivQ(i)), c = 0, k = nConsec + 1); while(c < count, if(vecsum(cn) == nConsec, c++; print1(k-nConsec, ", ")); cn = concat(vecextract(cn, "^1"), isStolNivQ(k)); k++);} \\ using the function isA364123(n) from A364123
    lista(50, 2)

A331821 Positive numbers k such that -k and -(k + 1) are both negabinary-Niven numbers (A331728).

Original entry on oeis.org

2, 3, 8, 9, 15, 24, 27, 32, 33, 39, 54, 55, 63, 77, 111, 114, 115, 123, 128, 129, 135, 144, 159, 174, 175, 203, 234, 235, 245, 255, 264, 294, 295, 329, 370, 371, 384, 413, 414, 415, 444, 447, 474, 475, 495, 504, 507, 512, 513, 519, 534, 535, 543, 580, 581, 624
Offset: 1

Views

Author

Amiram Eldar, Jan 27 2020

Keywords

Examples

			8 is a term since both -8 and -(8 + 1) = -9 are negabinary-Niven numbers: A039724(-8) = 1000 and 1 + 0 + 0 + 0 = 1 is a divisor of 8, and A039724(-9) = 1011 and 1 + 0 + 1 + 1 = 3 is a divisor of 9.
		

Crossrefs

Programs

  • Mathematica
    negaBinWt[n_] := negaBinWt[n] = If[n == 0, 0, negaBinWt[Quotient[n - 1, -2]] + Mod[n, 2]]; negaBinNivenQ[n_] := Divisible[n, negaBinWt[-n]]; c = 0; k = 1; s = {}; v = Table[-1, {2}]; While[c < 60, If[negaBinNivenQ[k], v = Join[Rest[v], {k}]; If[AllTrue[Differences[v], # == 1 &], c++; AppendTo[s, k - 1]]]; k++]; s

A331829 Positive numbers k such that k and k + 1 are both positive negabinary-Niven numbers (A331728) and -k and -(k + 1) are both negative negabinary-Niven numbers (A331819).

Original entry on oeis.org

2, 3, 8, 15, 32, 63, 128, 174, 245, 255, 512, 1023, 1085, 1295, 1505, 1854, 1925, 2048, 2744, 3248, 3303, 3752, 4025, 4095, 4760, 4815, 4865, 5004, 5319, 5768, 6327, 6776, 7104, 7784, 7944, 8154, 8192, 8574, 8792, 8855, 9800, 10254, 10808, 11312, 11816, 11871
Offset: 1

Views

Author

Amiram Eldar, Jan 28 2020

Keywords

Comments

Positive numbers k such that both k and k + 1 are in A331827.
Numbers of the form 2^(2*k+1) and 2^(2*k) - 1 are terms.

Crossrefs

Intersection of A331820 and A331821.

Programs

  • Mathematica
    negaBinWt[n_] := negaBinWt[n] = If[n==0, 0, negaBinWt[Quotient[n-1, -2]] + Mod[n, 2]]; negBinQ[n_] := And @@ (Divisible[n, negaBinWt[#]] & /@ {-n, n}); nConsec = 2; neg = negBinQ /@ Range[nConsec]; seq = {}; c = 0; k = nConsec + 1; While[c < 45, If[And @@ neg, c++; AppendTo[seq, k - nConsec]]; neg = Join[Rest[neg], {negBinQ[k]}]; k++]; seq
Previous Showing 11-15 of 15 results.