cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A331992 Matula-Goebel numbers of semi-lone-child-avoiding achiral rooted trees.

Original entry on oeis.org

1, 2, 4, 8, 9, 16, 27, 32, 49, 64, 81, 128, 243, 256, 343, 361, 512, 529, 729, 1024, 2048, 2187, 2401, 2809, 4096, 6561, 6859, 8192, 10609, 12167, 16384, 16807, 17161, 19683, 32768, 51529, 59049, 65536, 96721, 117649, 130321, 131072, 148877, 175561, 177147
Offset: 1

Views

Author

Gus Wiseman, Feb 06 2020

Keywords

Comments

A rooted tree is semi-lone-child-avoiding if there are no vertices with exactly one child unless that child is an endpoint/leaf.
In an achiral rooted tree, the branches of any given vertex are all equal.
The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.
Consists of one, two, and all numbers of the form prime(j)^k where k > 1 and j is already in the sequence.

Examples

			The sequence of all semi-lone-child-avoiding achiral rooted trees together with their Matula-Goebel numbers begins:
     1: o
     2: (o)
     4: (oo)
     8: (ooo)
     9: ((o)(o))
    16: (oooo)
    27: ((o)(o)(o))
    32: (ooooo)
    49: ((oo)(oo))
    64: (oooooo)
    81: ((o)(o)(o)(o))
   128: (ooooooo)
   243: ((o)(o)(o)(o)(o))
   256: (oooooooo)
   343: ((oo)(oo)(oo))
   361: ((ooo)(ooo))
   512: (ooooooooo)
   529: (((o)(o))((o)(o)))
   729: ((o)(o)(o)(o)(o)(o))
  1024: (oooooooooo)
		

Crossrefs

Except for two, a subset of A025475 (nonprime prime powers).
Not requiring achirality gives A331935.
The semi-achiral version is A331936.
The fully-chiral version is A331963.
The semi-chiral version is A331994.
The non-semi version is counted by A331967.
The enumeration of these trees by vertices is A331991.
Achiral rooted trees are counted by A003238.
MG-numbers of achiral rooted trees are A214577.

Programs

  • Mathematica
    msQ[n_]:=n<=2||!PrimeQ[n]&&Length[FactorInteger[n]]<=1&&And@@msQ/@PrimePi/@First/@FactorInteger[n];
    Select[Range[10000],msQ]

Formula

Intersection of A214577 (achiral) and A331935 (semi-lone-child-avoiding).

A331995 Numbers with at most one distinct prime prime index.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 72, 73, 74, 76
Offset: 1

Views

Author

Gus Wiseman, Feb 08 2020

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
   1: {}           22: {1,5}          44: {1,1,5}
   2: {1}          23: {9}            46: {1,9}
   3: {2}          24: {1,1,1,2}      47: {15}
   4: {1,1}        25: {3,3}          48: {1,1,1,1,2}
   5: {3}          26: {1,6}          49: {4,4}
   6: {1,2}        27: {2,2,2}        50: {1,3,3}
   7: {4}          28: {1,1,4}        52: {1,1,6}
   8: {1,1,1}      29: {10}           53: {16}
   9: {2,2}        31: {11}           54: {1,2,2,2}
  10: {1,3}        32: {1,1,1,1,1}    56: {1,1,1,4}
  11: {5}          34: {1,7}          57: {2,8}
  12: {1,1,2}      35: {3,4}          58: {1,10}
  13: {6}          36: {1,1,2,2}      59: {17}
  14: {1,4}        37: {12}           61: {18}
  16: {1,1,1,1}    38: {1,8}          62: {1,11}
  17: {7}          39: {2,6}          63: {2,2,4}
  18: {1,2,2}      40: {1,1,1,3}      64: {1,1,1,1,1,1}
  19: {8}          41: {13}           65: {3,6}
  20: {1,1,3}      42: {1,2,4}        67: {19}
  21: {2,4}        43: {14}           68: {1,1,7}
		

Crossrefs

These are numbers n such that A279952(n) <= 1.
Prime-indexed primes are A006450, with products A076610.
Numbers whose prime indices are not all prime are A330945.
Numbers with at least one prime prime index are A331386.
The set S of numbers with at most one prime index in S are A331784.
The set S of numbers with at most one distinct prime index in S are A331912.
Numbers with at most one prime prime index are A331914.
Numbers with exactly one prime prime index are A331915.
Numbers with exactly one distinct prime prime index are A331916.

Programs

  • Mathematica
    Select[Range[100],Count[PrimePi/@First/@FactorInteger[#],_?PrimeQ]<=1&]
Previous Showing 11-12 of 12 results.