A332279 Number of widely totally normal compositions of n.
1, 1, 1, 3, 4, 6, 12, 22, 29, 62, 119, 208, 368, 650, 1197, 2173, 3895, 7022, 12698, 22940, 41564
Offset: 0
Examples
The a(1) = 1 through a(7) = 22 compositions: (1) (11) (12) (112) (122) (123) (1123) (21) (121) (212) (132) (1132) (111) (211) (221) (213) (1213) (1111) (1121) (231) (1231) (1211) (312) (1312) (11111) (321) (1321) (1212) (2113) (1221) (2122) (2112) (2131) (2121) (2212) (11211) (2311) (111111) (3112) (3121) (3211) (11221) (12112) (12121) (12211) (21121) (111211) (112111) (1111111) For example, starting with y = (3,2,1,1,2,2,2,1,2,1,1,1,1) and repeatedly taking run-lengths gives y -> (1,1,2,3,1,1,4) -> (2,1,1,2,1) -> (1,2,1,1) -> (1,1,2) -> (2,1) -> (1,1). These are all normal and the last is all 1's, so y is counted under a(20).
Crossrefs
Programs
-
Mathematica
recnQ[ptn_]:=Or[ptn=={},Union[ptn]=={1},And[Union[ptn]==Range[Max[ptn]],recnQ[Length/@Split[ptn]]]]; Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],recnQ]],{n,0,10}]
Formula
For n > 1, a(n) = A332296(n) - 1.
Comments