A333113
The number of vertices inside a heptagon formed by the straight line segments mutually connecting all vertices and all points that divide the sides into n equal parts.
Original entry on oeis.org
42, 708, 5369, 17417, 47796, 99261, 194278, 331955, 546805, 833946, 1245314, 1762265, 2461837, 3311680, 4402405, 5700598, 7322231, 9200878, 11494161, 14108123, 17224438, 20752264, 24894009, 29506128, 34854099, 40780391, 47552050
Offset: 1
A332608
Number of pentagons in the graph formed by drawing the lines connecting any two of the 2*(n+2) perimeter points of a 3 X (n+1) rectangular grid of points (or equally, a 2 X n grid of squares).
Original entry on oeis.org
0, 0, 4, 12, 24, 28, 80, 128, 112, 200, 236, 356, 472, 652, 656, 940, 1040, 1300, 1600, 1948, 2048, 2588, 2856, 3260, 3716, 4492, 4572, 5324, 5904, 6508, 7200, 8144, 8664, 10296, 10548, 11664, 12580, 13860, 14596, 15980, 17312, 18516, 19692, 22152, 22912
Offset: 1
Cf.
A331452,
A331453,
A331454,
A331763,
A331765,
A331766,
A332599,
A332600,
A331457,
A332606,
A332607,
A332609.
A333116
The number of vertices inside a hexagram formed by the straight line segments mutually connecting all vertices and all points that divide the sides into n equal parts.
Original entry on oeis.org
109, 2761, 16387, 63943, 167071, 357919, 711895, 1283419, 2040187, 3173851, 4909351, 6730795, 9868711, 13101883, 16984963, 23055523, 29896135, 36496711, 47223703, 56703265, 68999605, 84927301, 103692535, 119208667
Offset: 1
A333117
The number of vertices inside a pentagram formed by the straight line segments mutually connecting all vertices and all points that divide the sides into n equal parts.
Original entry on oeis.org
26, 866, 6771, 24221, 64306, 132701, 259761, 453016, 734131, 1134081, 1673056, 2384606, 3326391, 4478286, 5941196, 7710796, 9901136, 12407581, 15497721, 19088991, 23256266, 28021386, 33537586, 39846196, 47092241, 55136771, 64103776, 74213991, 85642556, 98039461
Offset: 1
A332609
Maximum number of edges in any cell in the graph formed by drawing the lines connecting any two of the 2*(n+2) perimeter points of a 3 X (n+1) rectangular grid of points (or equally, a 2 X n grid of squares).
Original entry on oeis.org
4, 4, 5, 5, 5, 6, 5, 6, 8, 6, 6, 6, 6, 6, 6, 6, 6, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6
Offset: 1
Cf.
A331452,
A331453,
A331454,
A331763,
A331765,
A331766,
A332599,
A332600,
A331457,
A332606,
A332607,
A332608.
A333136
The number of vertices formed on a triangle with leg lengths equal to the Pythagorean triples by the straight line segments mutually connecting all vertices and all points that divide the sides into unit length parts.
Original entry on oeis.org
230, 5138, 13181, 29277, 48107, 100003, 173261, 256910, 247940, 541752, 554717, 869197, 1051503, 987045, 1333241, 1190131, 1843049, 2991447, 3073340, 4382249, 4630456, 4635744, 5914142, 6877208
Offset: 1
A332610
Triangle read by rows: T(m,n) = number of triangular regions in a "frame" of size m X n with m >= n >= 1 (see Comments in A331457 for definition of frame).
Original entry on oeis.org
4, 14, 48, 32, 102, 128, 70, 192, 204, 288, 124, 326, 312, 396, 512, 226, 524, 516, 600, 716, 928, 360, 802, 784, 868, 984, 1196, 1472, 566, 1192, 1196, 1280, 1396, 1608, 1884, 2304, 820, 1634, 1704, 1788, 1904, 2116, 2392, 2812, 3328, 1218, 2296, 2500, 2584, 2700, 2912, 3188, 3608, 4124, 4928
Offset: 1
Triangle begins:
[4],
[14, 48],
[32, 102, 128],
[70, 192, 204, 288],
[124, 326, 312, 396, 512],
[226, 524, 516, 600, 716, 928],
[360, 802, 784, 868, 984, 1196, 1472],
[566, 1192, 1196, 1280, 1396, 1608, 1884, 2304],
[820, 1634, 1704, 1788, 1904, 2116, 2392, 2812, 3328],
[1218, 2296, 2500, 2584, 2700, 2912, 3188, 3608, 4124, 4928],
[1696, 3074, 3456, 3540, 3656, 3868, 4144, 4564, 5080, 5884, 6848],
[2310, 4052, 4684, 4768, 4884, 5096, 5372, 5792, 6308, 7112, 8076, 9312],
...
A332611
Triangle read by rows: T(m,n) = number of quadrilateral regions in a "frame" of size m X n with m >= n >= 1 (see Comments in A331457 for definition of frame).
Original entry on oeis.org
0, 2, 8, 14, 36, 80, 34, 92, 144, 208, 90, 194, 280, 356, 504, 154, 336, 432, 520, 680, 856, 288, 554, 724, 824, 996, 1184, 1512, 462, 812, 1096, 1208, 1392, 1592, 1932, 2352, 742, 1314, 1680, 1804, 2000, 2212, 2564, 2996, 3640, 1038, 1756, 2296, 2432, 2640, 2864, 3228, 3672, 4328, 5016
Offset: 1
Triangle begins:
[0],
[2, 8],
[14, 36, 80],
[34, 92, 144, 208],
[90, 194, 280, 356, 504],
[154, 336, 432, 520, 680, 856],
[288, 554, 724, 824, 996, 1184, 1512],
[462, 812, 1096, 1208, 1392, 1592, 1932, 2352],
[742, 1314, 1680, 1804, 2000, 2212, 2564, 2996, 3640],
[1038, 1756, 2296, 2432, 2640, 2864, 3228, 3672, 4328, 5016],
[1512, 2508, 3268, 3416, 3636, 3872, 4248, 4704, 5372, 6072, 7128],
[2074, 3252, 4416, 4576, 4808, 5056, 5444, 5912, 6592, 7304, 8372, 9616],
....
A338003
The number of vertices in a 4-pointed star formed by the straight line segments mutually connecting all vertices and all points that divide the sides into n equal parts.
Original entry on oeis.org
37, 653, 5517, 17153, 50349, 97037, 204329, 330613, 571021, 835713, 1298533, 1764125
Offset: 1
Comments