cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A333190 Number of integer partitions of n whose run-lengths are either strictly increasing or strictly decreasing.

Original entry on oeis.org

1, 1, 2, 2, 4, 5, 7, 10, 13, 15, 21, 26, 29, 39, 49, 50, 68, 80, 92, 109, 129, 142, 181, 201, 227, 262, 317, 343, 404, 456, 516, 589, 677, 742, 870, 949, 1077, 1207, 1385, 1510, 1704, 1895, 2123, 2352, 2649, 2877, 3261, 3571, 3966, 4363, 4873, 5300, 5914, 6466
Offset: 0

Views

Author

Gus Wiseman, May 17 2020

Keywords

Examples

			The a(1) = 1 through a(8) = 13 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (111)  (22)    (221)    (33)      (322)      (44)
                    (211)   (311)    (222)     (331)      (332)
                    (1111)  (2111)   (411)     (511)      (422)
                            (11111)  (3111)    (2221)     (611)
                                     (21111)   (4111)     (2222)
                                     (111111)  (22111)    (5111)
                                               (31111)    (22211)
                                               (211111)   (41111)
                                               (1111111)  (221111)
                                                          (311111)
                                                          (2111111)
                                                          (11111111)
		

Crossrefs

The non-strict version is A332745.
The generalization to compositions is A333191.
Partitions with distinct run-lengths are A098859.
Partitions with strictly increasing run-lengths are A100471.
Partitions with strictly decreasing run-lengths are A100881.
Partitions with weakly decreasing run-lengths are A100882.
Partitions with weakly increasing run-lengths are A100883.
Partitions with unimodal run-lengths are A332280.
Partitions whose run-lengths are not increasing nor decreasing are A332641.
Compositions whose run-lengths are unimodal or co-unimodal are A332746.
Compositions that are neither increasing nor decreasing are A332834.
Strictly increasing or strictly decreasing compositions are A333147.
Compositions with strictly increasing run-lengths are A333192.
Numbers with strictly increasing prime multiplicities are A334965.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Or[Less@@Length/@Split[#],Greater@@Length/@Split[#]]&]],{n,0,30}]

A332871 Number of compositions of n whose run-lengths are not weakly increasing.

Original entry on oeis.org

0, 0, 0, 0, 1, 4, 8, 24, 55, 128, 282, 625, 1336, 2855, 6000, 12551, 26022, 53744, 110361, 225914, 460756, 937413, 1902370, 3853445, 7791647, 15732468, 31725191, 63907437, 128613224, 258626480, 519700800, 1043690354, 2094882574, 4202903667, 8428794336, 16897836060
Offset: 0

Views

Author

Gus Wiseman, Feb 29 2020

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n.
Also compositions whose run-lengths are not weakly decreasing.

Examples

			The a(4) = 1 through a(6) = 8 compositions:
  (112)  (113)   (114)
         (221)   (1113)
         (1112)  (1131)
         (1121)  (1221)
                 (2112)
                 (11112)
                 (11121)
                 (11211)
For example, the composition (2,1,1,2) has run-lengths (1,2,1), which are not weakly increasing, so (2,1,1,2) is counted under a(6).
		

Crossrefs

The version for the compositions themselves (not run-lengths) is A056823.
The version for unsorted prime signature is A112769, with dual A071365.
The case without weakly decreasing run-lengths either is A332833.
The complement is counted by A332836.
Compositions that are not unimodal are A115981.
Compositions with equal run-lengths are A329738.
Compositions whose run-lengths are not unimodal are A332727.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],!LessEqual@@Length/@Split[#]&]],{n,0,10}]

Formula

a(n) = 2^(n - 1) - A332836(n).

Extensions

Terms a(21) and beyond from Andrew Howroyd, Dec 30 2020
Previous Showing 11-12 of 12 results.