cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 65 results. Next

A335512 Numbers k such that the k-th composition in standard order (A066099) matches the pattern (1,1,1).

Original entry on oeis.org

7, 15, 23, 27, 29, 30, 31, 39, 42, 47, 51, 55, 57, 59, 60, 61, 62, 63, 71, 79, 85, 86, 87, 90, 91, 93, 94, 95, 99, 103, 106, 107, 109, 110, 111, 113, 115, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 135, 143, 151, 155, 157, 158, 159, 167, 170, 171
Offset: 1

Views

Author

Gus Wiseman, Jun 18 2020

Keywords

Comments

These are compositions with some part appearing more than twice.
A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).

Examples

			The sequence of terms together with the corresponding compositions begins:
   7: (1,1,1)
  15: (1,1,1,1)
  23: (2,1,1,1)
  27: (1,2,1,1)
  29: (1,1,2,1)
  30: (1,1,1,2)
  31: (1,1,1,1,1)
  39: (3,1,1,1)
  42: (2,2,2)
  47: (2,1,1,1,1)
  51: (1,3,1,1)
  55: (1,2,1,1,1)
  57: (1,1,3,1)
  59: (1,1,2,1,1)
  60: (1,1,1,3)
		

Crossrefs

The complement A335513 is the avoiding version.
Patterns matching this pattern are counted by A335508 (by length).
Permutations of prime indices matching this pattern are counted by A335510.
These compositions are counted by A335455 (by sum).
Constant patterns are counted by A000005 and ranked by A272919.
Permutations are counted by A000142 and ranked by A333218.
Patterns are counted by A000670 and ranked by A333217.
Non-unimodal compositions are counted by A115981 and ranked by A335373.
Combinatory separations are counted by A269134.
Patterns matched by standard compositions are counted by A335454.
Minimal patterns avoided by a standard composition are counted by A335465.
The (1,1)-matching version is A335488.

Programs

  • Mathematica
    stc[n_]:=Reverse[Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]];
    Select[Range[0,100],MatchQ[stc[#],{_,x_,_,x_,_,x_,_}]&]

A104462 Convert the binary strings in A101305 to decimal.

Original entry on oeis.org

0, 2, 20, 328, 10512, 672800, 86118464, 22046326912, 11287719379200, 11558624644301312, 23672063271529088000, 96960771160183144450048, 794302637344220319334797312, 13013854410247705711981319168000, 426437981314996820770203866497040384
Offset: 0

Views

Author

Jorge Coveiro, Apr 23 2005

Keywords

Comments

The a(n)-th composition in standard order is (2,3,..,n+1), where the k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. Moreover, the binary indices of a(n) are row n of A193973. Including 1 gives A164894, reverse A246534. - Gus Wiseman, Jun 28 2022

Examples

			From _Gus Wiseman_, Jun 28 2022: (Start)
The terms together with their standard compositions begin:
      0: ()
      2: (2)
     20: (2,3)
    328: (2,3,4)
  10512: (2,3,4,5)
(End)
		

Crossrefs

Cf. A101305.
A version for prime indices is A070826.

Programs

  • Maple
    convert(10,decimal,binary); convert(10100,decimal,binary); convert(101001000,decimal,binary); convert(10100100010000,decimal,binary); convert(10100100010000100000,decimal,binary);
  • Mathematica
    stcinv[q_]:=Total[2^Accumulate[Reverse[q]]]/2;
    Table[stcinv[Range[2,n]],{n,8}] (* Gus Wiseman, Jun 28 2022 *)
  • Python
    def a(n): return 0 if n==0 else int("".join("1"+"0"*(i+1) for i in range(n)), 2)
    print([a(n) for n in range(15)]) # Michael S. Branicky, Jun 28 2022

Extensions

a(14) and beyond from Michael S. Branicky, Jun 28 2022

A335475 Numbers k such that the k-th composition in standard order (A066099) matches the pattern (1,2,2).

Original entry on oeis.org

26, 53, 54, 58, 90, 100, 106, 107, 109, 110, 117, 118, 122, 154, 164, 181, 182, 186, 201, 202, 204, 210, 212, 213, 214, 215, 218, 219, 221, 222, 228, 234, 235, 237, 238, 245, 246, 250, 282, 309, 310, 314, 329, 332, 346, 356, 362, 363, 365, 366, 373, 374, 378
Offset: 1

Views

Author

Gus Wiseman, Jun 18 2020

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).

Examples

			The sequence of terms together with the corresponding compositions begins:
   26: (1,2,2)
   53: (1,2,2,1)
   54: (1,2,1,2)
   58: (1,1,2,2)
   90: (2,1,2,2)
  100: (1,3,3)
  106: (1,2,2,2)
  107: (1,2,2,1,1)
  109: (1,2,1,2,1)
  110: (1,2,1,1,2)
  117: (1,1,2,2,1)
  118: (1,1,2,1,2)
  122: (1,1,1,2,2)
  154: (3,1,2,2)
  164: (2,3,3)
		

Crossrefs

The complement A335525 is the avoiding version.
The (2,2,1)-matching version is A335477.
Patterns matching this pattern are counted by A335509 (by length).
Permutations of prime indices matching this pattern are counted by A335453.
These compositions are counted by A335472 (by sum).
Constant patterns are counted by A000005 and ranked by A272919.
Permutations are counted by A000142 and ranked by A333218.
Patterns are counted by A000670 and ranked by A333217.
Non-unimodal compositions are counted by A115981 and ranked by A335373.
Combinatory separations are counted by A269134.
Patterns matched by standard compositions are counted by A335454.
Minimal patterns avoided by a standard composition are counted by A335465.

Programs

  • Mathematica
    stc[n_]:=Reverse[Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]];
    Select[Range[0,100],MatchQ[stc[#],{_,x_,_,y_,_,y_,_}/;x
    				

A335513 Numbers k such that the k-th composition in standard order (A066099) avoids the pattern (1,1,1).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 28, 32, 33, 34, 35, 36, 37, 38, 40, 41, 43, 44, 45, 46, 48, 49, 50, 52, 53, 54, 56, 58, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 88, 89
Offset: 1

Views

Author

Gus Wiseman, Jun 18 2020

Keywords

Comments

These are compositions with no part appearing more than twice.
A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).

Examples

			The sequence of terms together with the corresponding compositions begins:
   0: ()         17: (4,1)      37: (3,2,1)
   1: (1)        18: (3,2)      38: (3,1,2)
   2: (2)        19: (3,1,1)    40: (2,4)
   3: (1,1)      20: (2,3)      41: (2,3,1)
   4: (3)        21: (2,2,1)    43: (2,2,1,1)
   5: (2,1)      22: (2,1,2)    44: (2,1,3)
   6: (1,2)      24: (1,4)      45: (2,1,2,1)
   8: (4)        25: (1,3,1)    46: (2,1,1,2)
   9: (3,1)      26: (1,2,2)    48: (1,5)
  10: (2,2)      28: (1,1,3)    49: (1,4,1)
  11: (2,1,1)    32: (6)        50: (1,3,2)
  12: (1,3)      33: (5,1)      52: (1,2,3)
  13: (1,2,1)    34: (4,2)      53: (1,2,2,1)
  14: (1,1,2)    35: (4,1,1)    54: (1,2,1,2)
  16: (5)        36: (3,3)      56: (1,1,4)
		

Crossrefs

These compositions are counted by A232432 (by sum).
The (1,1)-avoiding version is A233564.
The complement A335512 is the matching version.
Constant patterns are counted by A000005 and ranked by A272919.
Permutations are counted by A000142 and ranked by A333218.
Patterns are counted by A000670 and ranked by A333217.
Patterns avoiding (1,1,1) are counted by A080599 (by length).
Non-unimodal compositions are counted by A115981 and ranked by A335373.
Combinatory separations are counted by A269134.
Patterns matched by standard compositions are counted by A335454.
Minimal patterns avoided by a standard composition are counted by A335465.
Permutations of prime indices avoiding (1,1,1) are counted by A335511.

Programs

  • Mathematica
    stc[n_]:=Reverse[Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]];
    Select[Range[0,100],!MatchQ[stc[#],{_,x_,_,x_,_,x_,_}]&]

A333767 Length of shortest run of zeros after a one in the binary expansion of n. a(0) = 0.

Original entry on oeis.org

0, 0, 1, 0, 2, 0, 0, 0, 3, 0, 1, 0, 0, 0, 0, 0, 4, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 1, 0, 2, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 1, 0, 2, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0
Offset: 0

Views

Author

Gus Wiseman, Apr 06 2020

Keywords

Examples

			The binary expansion of 148 is (1,0,0,1,0,1,0,0), so a(148) = 1.
		

Crossrefs

Positions of first appearances (ignoring index 0) are A000079.
Positions of terms > 0 are A022340.
Minimum prime index is A055396.
The maximum part minus 1 is given by A087117.
All of the following pertain to compositions in standard order (A066099):
- Length is A000120.
- Compositions without 1's are A022340.
- Sum is A070939.
- Product is A124758.
- Runs are counted by A124767.
- Strict compositions are A233564.
- Constant compositions are A272919.
- Runs-resistance is A333628.
- Maximum is A333766.
- Minimum is A333768.
- Weakly decreasing compositions are A114994.
- Weakly increasing compositions are A225620.
- Strictly decreasing compositions are A333255.
- Strictly increasing compositions are A333256.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[If[n==0,0,Min@@stc[n]-1],{n,0,100}]

Formula

For n > 0, a(n) = A333768(n) - 1.

A334031 The smallest number whose unsorted prime signature is the reversed n-th composition in standard order.

Original entry on oeis.org

1, 2, 4, 6, 8, 18, 12, 30, 16, 54, 36, 150, 24, 90, 60, 210, 32, 162, 108, 750, 72, 450, 300, 1470, 48, 270, 180, 1050, 120, 630, 420, 2310, 64, 486, 324, 3750, 216, 2250, 1500, 10290, 144, 1350, 900, 7350, 600, 4410, 2940, 25410, 96, 810, 540, 5250, 360, 3150
Offset: 0

Views

Author

Gus Wiseman, Apr 17 2020

Keywords

Comments

All terms are normal (A055932), meaning their prime indices cover an initial interval of positive integers.
Unsorted prime signature is the sequence of exponents in a number's prime factorization.
The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence of terms together with their prime indices begins:
       1: {}
       2: {1}
       4: {1,1}
       6: {1,2}
       8: {1,1,1}
      18: {1,2,2}
      12: {1,1,2}
      30: {1,2,3}
      16: {1,1,1,1}
      54: {1,2,2,2}
      36: {1,1,2,2}
     150: {1,2,3,3}
      24: {1,1,1,2}
      90: {1,2,2,3}
      60: {1,1,2,3}
     210: {1,2,3,4}
      32: {1,1,1,1,1}
     162: {1,2,2,2,2}
For example, the 13th composition in standard order is (1,2,1), and the least number with prime signature (1,2,1) is 90 = 2^1 * 3^2 * 5^1, so a(13) = 90.
		

Crossrefs

The range is A055932.
The non-reversed version is A057335.
Unsorted prime signature is A124010.
Numbers whose prime signature is aperiodic are A329139.
Normal numbers with standard compositions as prime signature are A334032.
All of the following pertain to compositions in standard order (A066099):
- Length is A000120.
- Sum is A070939.
- Strict compositions are A233564.
- Constant compositions are A272919.
- Aperiodic compositions are A328594.
- Normal compositions are A333217.
- Heinz number is A333219.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[Product[Prime[i]^stc[n][[-i]],{i,DigitCount[n,2,1]}],{n,0,100}]

Formula

a(n) = A057335(A059893(n)).

A334033 The a(n)-th composition in standard order (graded reverse-lexicographic) is the reversed unsorted prime signature of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 4, 2, 3, 1, 6, 1, 3, 3, 8, 1, 5, 1, 6, 3, 3, 1, 12, 2, 3, 4, 6, 1, 7, 1, 16, 3, 3, 3, 10, 1, 3, 3, 12, 1, 7, 1, 6, 6, 3, 1, 24, 2, 5, 3, 6, 1, 9, 3, 12, 3, 3, 1, 14, 1, 3, 6, 32, 3, 7, 1, 6, 3, 7, 1, 20, 1, 3, 5, 6, 3, 7, 1, 24, 8, 3, 1
Offset: 1

Views

Author

Gus Wiseman, Apr 18 2020

Keywords

Comments

Unsorted prime signature (A124010) is the sequence of exponents in a number's prime factorization.
The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The unsorted prime signature of 12345678 is (1,2,1,1), whose reverse (1,1,2,1) is the 29th composition in standard order, so a(12345678) = 29.
		

Crossrefs

Positions of first appearances are A334031.
The non-reversed version is A334032.
Unsorted prime signature is A124010.
Least number with reversed prime signature is A331580.
All of the following pertain to compositions in standard order (A066099):
- Length is A000120.
- Sum is A070939.
- Strict compositions are A233564.
- Constant compositions are A272919.
- Aperiodic compositions are A328594.
- Normal compositions are A333217.
- Permutations are A333218.
- Heinz number is A333219.

Programs

  • Mathematica
    stcinv[q_]:=Total[2^Accumulate[Reverse[q]]]/2;
    Table[stcinv[Reverse[Last/@If[n==1,{},FactorInteger[n]]]],{n,100}]

Formula

a(A334031(n)) = n.
A334031(a(n)) = A071364(n).
a(A057335(n))= A059893(n).
A057335(a(n)) = A331580(n).

A335476 Numbers k such that the k-th composition in standard order (A066099) matches the pattern (1,1,2).

Original entry on oeis.org

14, 28, 29, 30, 46, 54, 56, 57, 58, 59, 60, 61, 62, 78, 84, 92, 93, 94, 102, 108, 109, 110, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 142, 156, 157, 158, 168, 169, 172, 174, 180, 182, 184, 185, 186, 187, 188, 189, 190, 198, 204
Offset: 1

Views

Author

Gus Wiseman, Jun 18 2020

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).

Examples

			The sequence of terms together with the corresponding compositions begins:
  14: (1,1,2)
  28: (1,1,3)
  29: (1,1,2,1)
  30: (1,1,1,2)
  46: (2,1,1,2)
  54: (1,2,1,2)
  56: (1,1,4)
  57: (1,1,3,1)
  58: (1,1,2,2)
  59: (1,1,2,1,1)
  60: (1,1,1,3)
  61: (1,1,1,2,1)
  62: (1,1,1,1,2)
  78: (3,1,1,2)
  84: (2,2,3)
		

Crossrefs

The complement A335522 is the avoiding version.
The (2,1,1)-matching version is A335478.
Patterns matching this pattern are counted by A335509 (by length).
Permutations of prime indices matching this pattern are counted by A335446.
These compositions are counted by A335470 (by sum).
Constant patterns are counted by A000005 and ranked by A272919.
Permutations are counted by A000142 and ranked by A333218.
Patterns are counted by A000670 and ranked by A333217.
Non-unimodal compositions are counted by A115981 and ranked by A335373.
Combinatory separations are counted by A269134.
Patterns matched by standard compositions are counted by A335454.
Minimal patterns avoided by a standard composition are counted by A335465.

Programs

  • Mathematica
    stc[n_]:=Reverse[Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]];
    Select[Range[0,100],MatchQ[stc[#],{_,x_,_,x_,_,y_,_}/;x
    				

A335477 Numbers k such that the k-th composition in standard order (A066099) matches the pattern (2,2,1).

Original entry on oeis.org

21, 43, 45, 53, 73, 85, 86, 87, 91, 93, 107, 109, 117, 146, 147, 149, 153, 165, 169, 171, 172, 173, 174, 175, 181, 182, 183, 187, 189, 201, 213, 214, 215, 219, 221, 235, 237, 245, 273, 277, 293, 294, 295, 297, 299, 301, 306, 307, 309, 313, 325, 329, 331, 333
Offset: 1

Views

Author

Gus Wiseman, Jun 18 2020

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).

Examples

			The sequence of terms together with the corresponding compositions begins:
   21: (2,2,1)
   43: (2,2,1,1)
   45: (2,1,2,1)
   53: (1,2,2,1)
   73: (3,3,1)
   85: (2,2,2,1)
   86: (2,2,1,2)
   87: (2,2,1,1,1)
   91: (2,1,2,1,1)
   93: (2,1,1,2,1)
  107: (1,2,2,1,1)
  109: (1,2,1,2,1)
  117: (1,1,2,2,1)
  146: (3,3,2)
  147: (3,3,1,1)
		

Crossrefs

The complement A335524 is the avoiding version.
The (1,2,2)-matching version is A335475.
Patterns matching this pattern are counted by A335509 (by length).
Permutations of prime indices matching this pattern are counted by A335453.
These compositions are counted by A335472 (by sum).
Constant patterns are counted by A000005 and ranked by A272919.
Permutations are counted by A000142 and ranked by A333218.
Patterns are counted by A000670 and ranked by A333217.
Non-unimodal compositions are counted by A115981 and ranked by A335373.
Combinatory separations are counted by A269134.
Patterns matched by standard compositions are counted by A335454.
Minimal patterns avoided by a standard composition are counted by A335465.

Programs

  • Mathematica
    stc[n_]:=Reverse[Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]];
    Select[Range[0,100],MatchQ[stc[#],{_,x_,_,x_,_,y_,_}/;x>y]&]

A335478 Numbers k such that the k-th composition in standard order (A066099) matches the pattern (2,1,1).

Original entry on oeis.org

11, 19, 23, 27, 35, 39, 43, 45, 46, 47, 51, 55, 59, 67, 71, 74, 75, 77, 78, 79, 83, 87, 89, 91, 92, 93, 94, 95, 99, 103, 107, 109, 110, 111, 115, 119, 123, 131, 135, 138, 139, 141, 142, 143, 147, 149, 150, 151, 153, 154, 155, 156, 157, 158, 159, 163, 167, 171
Offset: 1

Views

Author

Gus Wiseman, Jun 18 2020

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).

Examples

			The sequence of terms together with the corresponding compositions begins:
  11: (2,1,1)
  19: (3,1,1)
  23: (2,1,1,1)
  27: (1,2,1,1)
  35: (4,1,1)
  39: (3,1,1,1)
  43: (2,2,1,1)
  45: (2,1,2,1)
  46: (2,1,1,2)
  47: (2,1,1,1,1)
  51: (1,3,1,1)
  55: (1,2,1,1,1)
  59: (1,1,2,1,1)
  67: (5,1,1)
  71: (4,1,1,1)
		

Crossrefs

The complement A335523 is the avoiding version.
The (1,1,2)-matching version is A335476.
Patterns matching this pattern are counted by A335509 (by length).
Permutations of prime indices matching this pattern are counted by A335516.
These compositions are counted by A335470 (by sum).
Constant patterns are counted by A000005 and ranked by A272919.
Permutations are counted by A000142 and ranked by A333218.
Patterns are counted by A000670 and ranked by A333217.
Non-unimodal compositions are counted by A115981 and ranked by A335373.
Combinatory separations are counted by A269134.
Patterns matched by standard compositions are counted by A335454.
Minimal patterns avoided by a standard composition are counted by A335465.

Programs

  • Mathematica
    stc[n_]:=Reverse[Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]];
    Select[Range[0,100],MatchQ[stc[#],{_,x_,_,y_,_,y_,_}/;x>y]&]
Previous Showing 51-60 of 65 results. Next