A335019 Numbers whose prime exponents generates rotationally symmetric XOR-triangles.
1, 2, 4, 8, 16, 32, 42, 64, 70, 128, 256, 390, 512, 1024, 1122, 1764, 2002, 2048, 2210, 4096, 4900, 6270, 7854, 8192, 9450, 15470, 15750, 16384, 26460, 32768, 36366, 54978, 58786, 65536, 66990, 73500, 74088, 86710, 108290, 123480, 131072, 152100, 162690
Offset: 1
Examples
The number 15750 = 7^1 * 5^2 * 3^3 * 2^1 yields the following XOR-triangle: 1 2 3 1 3 1 2 2 3 1 As this XOR-triangle has rotational symmetry, 15750 belongs to this sequence.
Programs
-
PARI
is(n) = { my (e); if (n==1, e=[], my (f=factor(n), m=primepi(f[#f~,1])); e=vector(m, k, valuation(n, prime(m+1-k))) ); my (x=e); for (k=1, #e, if (e[k]!=x[#x], return (0)); if (x[1]!=e[#e+1-k], return (0)); x=vector(#x-1, k, bitxor(x[k], x[k+1])); ); return (1); }
Comments