cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 88 results. Next

A335483 Numbers k such that the k-th composition in standard order (A066099) matches the pattern (3,1,2).

Original entry on oeis.org

38, 70, 77, 78, 102, 134, 140, 141, 142, 150, 154, 155, 157, 158, 166, 198, 205, 206, 230, 262, 268, 269, 270, 276, 278, 281, 282, 283, 284, 285, 286, 294, 301, 302, 306, 308, 309, 310, 311, 314, 315, 317, 318, 326, 333, 334, 358, 390, 396, 397, 398, 406, 410
Offset: 1

Views

Author

Gus Wiseman, Jun 18 2020

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).

Examples

			The sequence of terms together with the corresponding compositions begins:
   38: (3,1,2)
   70: (4,1,2)
   77: (3,1,2,1)
   78: (3,1,1,2)
  102: (1,3,1,2)
  134: (5,1,2)
  140: (4,1,3)
  141: (4,1,2,1)
  142: (4,1,1,2)
  150: (3,2,1,2)
  154: (3,1,2,2)
  155: (3,1,2,1,1)
  157: (3,1,1,2,1)
  158: (3,1,1,1,2)
  166: (2,3,1,2)
		

Crossrefs

The version counting permutations is A056986.
Patterns matching this pattern are counted by A335515 (by length).
Permutations of prime indices matching this pattern are counted by A335520.
These compositions are counted by A335514 (by sum).
Constant patterns are counted by A000005 and ranked by A272919.
Permutations are counted by A000142 and ranked by A333218.
Patterns are counted by A000670 and ranked by A333217.
Non-unimodal compositions are counted by A115981 and ranked by A335373.
Permutations matching (1,3,2,4) are counted by A158009.
Combinatory separations are counted by A269134.
Patterns matched by standard compositions are counted by A335454.
Minimal patterns avoided by a standard composition are counted by A335465.
Other permutations:
- A335479 (1,2,3)
- A335480 (1,3,2)
- A335481 (2,1,3)
- A335482 (2,3,1)
- A335483 (3,1,2)
- A335484 (3,2,1)

Programs

  • Mathematica
    stc[n_]:=Reverse[Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]];
    Select[Range[0,100],MatchQ[stc[#],{_,x_,_,y_,_,z_,_}/;y
    				

A335486 Numbers k such that the k-th composition in standard order (A066099) is not weakly increasing.

Original entry on oeis.org

5, 9, 11, 13, 17, 18, 19, 21, 22, 23, 25, 27, 29, 33, 34, 35, 37, 38, 39, 41, 43, 44, 45, 46, 47, 49, 50, 51, 53, 54, 55, 57, 59, 61, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 97, 98, 99
Offset: 1

Views

Author

Gus Wiseman, Jun 18 2020

Keywords

Comments

Also compositions matching the pattern (2,1).
A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence of terms together with the corresponding compositions begins:
   5: (2,1)
   9: (3,1)
  11: (2,1,1)
  13: (1,2,1)
  17: (4,1)
  18: (3,2)
  19: (3,1,1)
  21: (2,2,1)
  22: (2,1,2)
  23: (2,1,1,1)
  25: (1,3,1)
  27: (1,2,1,1)
  29: (1,1,2,1)
  33: (5,1)
  34: (4,2)
  35: (4,1,1)
		

Crossrefs

The complement A225620 is the avoiding version.
The (1,2)-matching version is A335485.
Patterns matching this pattern are counted by A002051 (by length).
Permutations of prime indices matching this pattern are counted by A008480(n) - 1.
These compositions are counted by A056823 (by sum).
Constant patterns are counted by A000005 and ranked by A272919.
Permutations are counted by A000142 and ranked by A333218.
Patterns are counted by A000670 and ranked by A333217.
Non-unimodal compositions are counted by A115981 and ranked by A335373.
Combinatory separations are counted by A269134.
Patterns matched by standard compositions are counted by A335454.
Minimal patterns avoided by a standard composition are counted by A335465.

Programs

  • Mathematica
    stc[n_]:=Reverse[Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]];
    Select[Range[0,100],MatchQ[stc[#],{_,x_,_,y_,_}/;x>y]&]

A335468 Numbers k such that the k-th composition in standard order (A066099) matches the pattern (2,1,2).

Original entry on oeis.org

22, 45, 46, 54, 76, 86, 90, 91, 93, 94, 109, 110, 118, 148, 150, 153, 156, 166, 173, 174, 178, 180, 181, 182, 183, 186, 187, 189, 190, 204, 214, 218, 219, 221, 222, 237, 238, 246, 278, 280, 297, 300, 301, 302, 306, 307, 308, 310, 313, 316, 326, 332, 333, 334
Offset: 1

Views

Author

Gus Wiseman, Jun 16 2020

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).

Examples

			The sequence together with the corresponding compositions begins:
   22: (2,1,2)
   45: (2,1,2,1)
   46: (2,1,1,2)
   54: (1,2,1,2)
   76: (3,1,3)
   86: (2,2,1,2)
   90: (2,1,2,2)
   91: (2,1,2,1,1)
   93: (2,1,1,2,1)
   94: (2,1,1,1,2)
  109: (1,2,1,2,1)
  110: (1,2,1,1,2)
  118: (1,1,2,1,2)
  148: (3,2,3)
  150: (3,2,1,2)
		

Crossrefs

The complement A335469 is the avoiding version.
The (1,2,1)-matching version is A335466.
These compositions are counted by A335472.
Constant patterns are counted by A000005 and ranked by A272919.
Permutations are counted by A000142 and ranked by A333218.
Patterns are counted by A000670 and ranked by A333217.
Non-unimodal compositions are counted by A115981 and ranked by A335373.
Combinatory separations are counted by A269134 and ranked by A334030.
Patterns matched by standard compositions are counted by A335454.
Minimal patterns avoided by a standard composition are counted by A335465.

Programs

  • Mathematica
    stc[n_]:=Reverse[Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]];
    Select[Range[0,100],MatchQ[stc[#],{_,x_,_,y_,_,x_,_}/;x>y]&];

A335481 Numbers k such that the k-th composition in standard order (A066099) matches the pattern (2,1,3).

Original entry on oeis.org

44, 88, 89, 92, 108, 152, 172, 176, 177, 178, 179, 180, 184, 185, 188, 216, 217, 220, 236, 296, 300, 304, 305, 312, 332, 344, 345, 348, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 364, 368, 369, 370, 371, 372, 376, 377, 380, 408, 428, 432, 433, 434, 435
Offset: 1

Views

Author

Gus Wiseman, Jun 18 2020

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).

Examples

			The sequence of terms together with the corresponding compositions begins:
   44: (2,1,3)
   88: (2,1,4)
   89: (2,1,3,1)
   92: (2,1,1,3)
  108: (1,2,1,3)
  152: (3,1,4)
  172: (2,2,1,3)
  176: (2,1,5)
  177: (2,1,4,1)
  178: (2,1,3,2)
  179: (2,1,3,1,1)
  180: (2,1,2,3)
  184: (2,1,1,4)
  185: (2,1,1,3,1)
  188: (2,1,1,1,3)
		

Crossrefs

The version counting permutations is A056986.
Patterns matching this pattern are counted by A335515 (by length).
Permutations of prime indices matching this pattern are counted by A335520.
These compositions are counted by A335514 (by sum).
Constant patterns are counted by A000005 and ranked by A272919.
Permutations are counted by A000142 and ranked by A333218.
Patterns are counted by A000670 and ranked by A333217.
Non-unimodal compositions are counted by A115981 and ranked by A335373.
Permutations matching (1,3,2,4) are counted by A158009.
Combinatory separations are counted by A269134.
Patterns matched by standard compositions are counted by A335454.
Minimal patterns avoided by a standard composition are counted by A335465.
Other permutations:
- A335479 (1,2,3)
- A335480 (1,3,2)
- A335481 (2,1,3)
- A335482 (2,3,1)
- A335483 (3,1,2)
- A335484 (3,2,1)

Programs

  • Mathematica
    stc[n_]:=Reverse[Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]];
    Select[Range[0,100],MatchQ[stc[#],{_,x_,_,y_,_,z_,_}/;y
    				

A335484 Numbers k such that the k-th composition in standard order (A066099) matches the pattern (3,2,1).

Original entry on oeis.org

37, 69, 75, 77, 101, 133, 137, 139, 141, 149, 150, 151, 155, 157, 165, 197, 203, 205, 229, 261, 265, 267, 269, 274, 275, 277, 278, 279, 281, 283, 285, 293, 297, 299, 300, 301, 302, 303, 309, 310, 311, 315, 317, 325, 331, 333, 357, 389, 393, 395, 397, 405, 406
Offset: 1

Views

Author

Gus Wiseman, Jun 18 2020

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).

Examples

			The sequence of terms together with the corresponding compositions begins:
   37: (3,2,1)
   69: (4,2,1)
   75: (3,2,1,1)
   77: (3,1,2,1)
  101: (1,3,2,1)
  133: (5,2,1)
  137: (4,3,1)
  139: (4,2,1,1)
  141: (4,1,2,1)
  149: (3,2,2,1)
  150: (3,2,1,2)
  151: (3,2,1,1,1)
  155: (3,1,2,1,1)
  157: (3,1,1,2,1)
  165: (2,3,2,1)
		

Crossrefs

The version counting permutations is A056986.
Patterns matching this pattern are counted by A335515 (by length).
Permutations of prime indices matching this pattern are counted by A335520.
These compositions are counted by A335514 (by sum).
Constant patterns are counted by A000005 and ranked by A272919.
Permutations are counted by A000142 and ranked by A333218.
Patterns are counted by A000670 and ranked by A333217.
Non-unimodal compositions are counted by A115981 and ranked by A335373.
Permutations matching (1,3,2,4) are counted by A158009.
Combinatory separations are counted by A269134.
Patterns matched by standard compositions are counted by A335454.
Minimal patterns avoided by a standard composition are counted by A335465.
Other permutations:
- A335479 (1,2,3)
- A335480 (1,3,2)
- A335481 (2,1,3)
- A335482 (2,3,1)
- A335483 (3,1,2)
- A335484 (3,2,1)

Programs

  • Mathematica
    stc[n_]:=Reverse[Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]];
    Select[Range[0,100],MatchQ[stc[#],{_,x_,_,y_,_,z_,_}/;z
    				

A335511 Number of (1,1,1)-avoiding permutations of the prime indices of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 0, 1, 2, 1, 3, 1, 2, 2, 0, 1, 3, 1, 3, 2, 2, 1, 0, 1, 2, 0, 3, 1, 6, 1, 0, 2, 2, 2, 6, 1, 2, 2, 0, 1, 6, 1, 3, 3, 2, 1, 0, 1, 3, 2, 3, 1, 0, 2, 0, 2, 2, 1, 12, 1, 2, 3, 0, 2, 6, 1, 3, 2, 6, 1, 0, 1, 2, 3, 3, 2, 6, 1, 0, 0, 2, 1, 12, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Jun 19 2020

Keywords

Comments

We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).

Crossrefs

Patterns avoiding this pattern are counted by A080599.
These compositions are counted by A232432.
The (1,1)-avoiding version is A335451.
The complement A335510 is the matching version.
These permutations are ranked by A335513.
Patterns are counted by A000670 and ranked by A333217.
Permutations of prime indices are counted by A008480.
Anti-run permutations of prime indices are counted by A335452.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Select[Permutations[primeMS[n]],!MatchQ[#,{_,x_,_,x_,_,x_,_}]&]],{n,100}]

Formula

If n is cubefree, a(n) = A008480(n), otherwise a(n) = 0.

A335524 Numbers k such that the k-th composition in standard order (A066099) avoids the pattern (2,2,1).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 44, 46, 47, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71
Offset: 1

Views

Author

Gus Wiseman, Jun 18 2020

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).

Crossrefs

Patterns avoiding this pattern are counted by A001710 (by length).
Permutations of prime indices avoiding this pattern are counted by A335450.
These compositions are counted by A335473 (by sum).
The complement A335477 is the matching version.
The (1,2,2)-avoiding version is A335525.
Constant patterns are counted by A000005 and ranked by A272919.
Permutations are counted by A000142 and ranked by A333218.
Patterns are counted by A000670 and ranked by A333217.
Non-unimodal compositions are counted by A115981 and ranked by A335373.
Combinatory separations are counted by A269134.
Patterns matched by standard compositions are counted by A335454.
Minimal patterns avoided by a standard composition are counted by A335465.

Programs

  • Mathematica
    stc[n_]:=Reverse[Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]];
    Select[Range[0,100],!MatchQ[stc[#],{_,x_,_,x_,_,y_,_}/;x>y]&]

A335525 Numbers k such that the k-th composition in standard order (A066099) avoids the pattern (1,2,2).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71
Offset: 1

Views

Author

Gus Wiseman, Jun 18 2020

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).

Crossrefs

Patterns avoiding this pattern are counted by A001710 (by length).
Permutations of prime indices avoiding this pattern are counted by A335450.
These compositions are counted by A335473 (by sum).
The complement A335475 is the matching version.
The (2,2,1)-avoiding version is A335524.
Constant patterns are counted by A000005 and ranked by A272919.
Permutations are counted by A000142 and ranked by A333218.
Patterns are counted by A000670 and ranked by A333217.
Non-unimodal compositions are counted by A115981 and ranked by A335373.
Combinatory separations are counted by A269134.
Patterns matched by standard compositions are counted by A335454.
Minimal patterns avoided by a standard composition are counted by A335465.

Programs

  • Mathematica
    stc[n_]:=Reverse[Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]];
    Select[Range[0,100],!MatchQ[stc[#],{_,x_,_,y_,_,y_,_}/;x
    				

A335550 Number of minimal normal patterns avoided by the prime indices of n in increasing or decreasing order, counting multiplicity.

Original entry on oeis.org

1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 4, 3, 4, 3, 3, 3, 4, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 4, 4, 3, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 3, 3, 4, 3, 3, 4, 3, 3, 3, 3, 4, 3, 3
Offset: 1

Views

Author

Gus Wiseman, Jun 26 2020

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define a (normal) pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).

Examples

			The a(12) = 4 minimal patterns avoiding (1,1,2) are: (2,1), (1,1,1), (1,2,2), (1,2,3).
The a(30) = 3 minimal patterns avoiding (1,2,3) are: (1,1), (2,1), (1,2,3,4).
		

Crossrefs

The version for standard compositions is A335465.
Patterns are counted by A000670.
Sum of prime indices is A056239.
Each number's prime indices are given in the rows of A112798.
Patterns are ranked by A333217.
Patterns matched by compositions are counted by A335456.
Patterns matched by prime indices are counted by A335549.
Patterns matched by partitions are counted by A335837.

Formula

It appears that for n > 1, a(n) = 3 if n is a power of a squarefree number (A072774), and a(n) = 4 otherwise.

A375140 Number of integer compositions of n whose leaders of weakly increasing runs are not strictly decreasing.

Original entry on oeis.org

0, 0, 0, 1, 3, 10, 26, 65, 151, 343, 750, 1614, 3410, 7123, 14724, 30220, 61639, 125166, 253233, 510936, 1028659, 2067620, 4150699, 8324552, 16683501, 33417933, 66910805, 133931495, 268023257, 536279457, 1072895973, 2146277961, 4293254010, 8587507415
Offset: 1

Views

Author

Gus Wiseman, Aug 10 2024

Keywords

Comments

The leaders of weakly increasing runs in a sequence are obtained by splitting it into maximal weakly increasing subsequences and taking the first term of each.
Also the number of integer compositions of n matching the dashed patterns 1-32 or 1-21.

Examples

			The a(1) = 0 through a(6) = 10 compositions:
     .  .  .  (121)  (131)   (132)
                     (1121)  (141)
                     (1211)  (1131)
                             (1212)
                             (1221)
                             (1311)
                             (2121)
                             (11121)
                             (11211)
                             (12111)
		

Crossrefs

For leaders of identical runs we have A056823.
The complement is counted by A188920.
Leaders of weakly increasing runs are rows of A374629, sum A374630.
For weakly decreasing leaders we have A374636, ranks A375137 or A375138.
For leaders of weakly decreasing runs we have the complement of A374746.
Compositions of this type are ranked by A375295, reverse A375296.
A003242 counts anti-runs, ranks A333489.
A106356 counts compositions by number of maximal anti-runs.
A238424 counts partitions whose first differences are an anti-run.
A274174 counts contiguous compositions, ranks A374249.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
A335456 counts patterns matched by compositions.
A335548 counts non-contiguous compositions, ranks A374253.
A374637 counts compositions by sum of leaders of weakly increasing runs.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],!Greater@@First/@Split[#,LessEqual]&]],{n,15}]
    - or -
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],MatchQ[#,{_,x_,_,z_,y_,_}/;x<=y
    				

Formula

a(n) = 2^(n-1) - A188920(n).
Previous Showing 61-70 of 88 results. Next