A188920
a(n) is the limiting term of the n-th column of the triangle in A188919.
Original entry on oeis.org
1, 1, 2, 4, 7, 13, 22, 38, 63, 105, 169, 274, 434, 686, 1069, 1660, 2548, 3897, 5906, 8911, 13352, 19917, 29532, 43605, 64056, 93715, 136499, 198059, 286233, 412199, 591455, 845851, 1205687, 1713286, 2427177, 3428611, 4829563, 6784550, 9505840, 13284849
Offset: 0
From _Gus Wiseman_, Aug 20 2024: (Start)
The a(0) = 1 through a(6) = 22 compositions:
() (1) (2) (3) (4) (5) (6)
(11) (12) (13) (14) (15)
(21) (22) (23) (24)
(111) (31) (32) (33)
(112) (41) (42)
(211) (113) (51)
(1111) (122) (114)
(212) (123)
(221) (132)
(311) (213)
(1112) (222)
(2111) (312)
(11111) (321)
(411)
(1113)
(1122)
(2112)
(2211)
(3111)
(11112)
(21111)
(111111)
(End)
- John Tyler Rascoe, Table of n, a(n) for n = 0..200
- A. M. Baxter, Algorithms for Permutation Statistics, Ph. D. Dissertation, Rutgers University, May 2011.
- Andrew M. Baxter and Lara K. Pudwell, Enumeration schemes for dashed patterns, arXiv preprint arXiv:1108.2642 [math.CO], 2011-2012.
- Wikipedia, Permutation pattern.
- Gus Wiseman, Sequences counting and ranking compositions by their leaders (for six types of runs).
For leaders of identical runs we have
A000041.
For weakly increasing leaders we have
A374635.
For leaders of anti-runs we have
A374680.
For leaders of strictly increasing runs we have
A374689.
-
b[u_, o_] := b[u, o] = Expand[If[u + o == 0, 1, Sum[b[u - j, o + j - 1]*x^(o + j - 1), {j, 1, u}] + Sum[If[u == 0, b[u + j - 1, o - j]*x^(o - j), 0], {j, 1, o}]]];
T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][ b[0, n]];
Take[T[40], 40] (* Jean-François Alcover, Sep 15 2018, after Alois P. Heinz in A188919 *)
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], Greater@@First/@Split[Reverse[#],LessEqual]&]],{n,0,15}] (* Gus Wiseman, Aug 20 2024 *)
- or -
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], !MatchQ[#,{_,y_,z_,_,x_,_}/;x<=yGus Wiseman, Aug 20 2024 *)
-
B_x(i,N) = {my(x='x+O('x^N), f=(x^i)/(1-x^i)*prod(j=i+1,N-i,1/(1-x^j))); f}
A_x(N) = {my(x='x+O('x^N), f=1+sum(i=1,N, B_x(i,N)*prod(j=1,i-1,1+B_x(j,N)))); Vec(f)}
A_x(60) \\ John Tyler Rascoe, Aug 23 2024
A375137
Numbers k such that the k-th composition in standard order (row k of A066099) matches the dashed pattern 1-32.
Original entry on oeis.org
50, 98, 101, 114, 178, 194, 196, 197, 202, 203, 210, 226, 229, 242, 306, 324, 354, 357, 370, 386, 388, 389, 393, 394, 395, 402, 404, 405, 406, 407, 418, 421, 434, 450, 452, 453, 458, 459, 466, 482, 485, 498, 562, 610, 613, 626, 644, 649, 690, 706, 708, 709
Offset: 1
Composition 102 is (1,3,1,2), which matches 1-3-2 but not 1-32.
Composition 210 is (1,2,3,2), which matches 1-32 but not 132.
Composition 358 is (2,1,3,1,2), which matches 2-3-1 and 1-3-2 but not 23-1 or 1-32.
The terms together with corresponding compositions begin:
50: (1,3,2)
98: (1,4,2)
101: (1,3,2,1)
114: (1,1,3,2)
178: (2,1,3,2)
194: (1,5,2)
196: (1,4,3)
197: (1,4,2,1)
202: (1,3,2,2)
203: (1,3,2,1,1)
210: (1,2,3,2)
226: (1,1,4,2)
229: (1,1,3,2,1)
242: (1,1,1,3,2)
The complement is too dense, but counted by
A189076.
Compositions of this type are counted by
A374636.
For leaders of strictly increasing runs we have
A375139, counted by
A375135.
All of the following pertain to compositions in standard order:
- Constant compositions are
A272919.
Cf.
A056823,
A106356,
A188919,
A238343,
A333213,
A373948,
A373953,
A374634,
A374635,
A374637,
A375123,
A375296.
-
stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
Select[Range[0,100],MatchQ[stc[#],{_,x_,_,z_,y_,_}/;x
A375138
Numbers k such that the k-th composition in standard order (row k of A066099) matches the dashed pattern 23-1.
Original entry on oeis.org
41, 81, 83, 105, 145, 161, 163, 165, 166, 167, 169, 209, 211, 233, 289, 290, 291, 297, 321, 323, 325, 326, 327, 329, 331, 332, 333, 334, 335, 337, 339, 361, 401, 417, 419, 421, 422, 423, 425, 465, 467, 489, 545, 553, 577, 578, 579, 581, 582, 583, 593, 595, 617
Offset: 1
Composition 89 is (2,1,3,1), which matches 2-3-1 but not 23-1.
Composition 165 is (2,3,2,1), which matches 23-1 but not 231.
Composition 358 is (2,1,3,1,2), which matches 2-3-1 and 1-3-2 but not 23-1 or 1-32.
The sequence together with corresponding compositions begins:
41: (2,3,1)
81: (2,4,1)
83: (2,3,1,1)
105: (1,2,3,1)
145: (3,4,1)
161: (2,5,1)
163: (2,4,1,1)
165: (2,3,2,1)
166: (2,3,1,2)
167: (2,3,1,1,1)
169: (2,2,3,1)
209: (1,2,4,1)
211: (1,2,3,1,1)
233: (1,1,2,3,1)
The complement is too dense, but counted by
A189076.
Compositions of this type are counted by
A374636.
All of the following pertain to compositions in standard order:
- Constant compositions are
A272919.
Cf.
A056823,
A106356,
A188919,
A238343,
A333213,
A335466,
A373948,
A373953,
A374633,
A375123,
A375139,
A374768.
-
stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
Select[Range[0,100],MatchQ[stc[#],{_,y_,z_,_,x_,_}/;x
A375295
Numbers k such that the leaders of maximal weakly increasing runs in the k-th composition in standard order (row k of A066099) are not strictly decreasing.
Original entry on oeis.org
13, 25, 27, 29, 45, 49, 50, 51, 53, 54, 55, 57, 59, 61, 77, 82, 89, 91, 93, 97, 98, 99, 101, 102, 103, 105, 107, 108, 109, 110, 111, 113, 114, 115, 117, 118, 119, 121, 123, 125, 141, 153, 155, 157, 162, 165, 173, 177, 178, 179, 181, 182, 183, 185, 187, 189
Offset: 1
The sequence together with corresponding compositions begins:
13: (1,2,1)
25: (1,3,1)
27: (1,2,1,1)
29: (1,1,2,1)
45: (2,1,2,1)
49: (1,4,1)
50: (1,3,2)
51: (1,3,1,1)
53: (1,2,2,1)
54: (1,2,1,2)
55: (1,2,1,1,1)
57: (1,1,3,1)
59: (1,1,2,1,1)
61: (1,1,1,2,1)
77: (3,1,2,1)
82: (2,3,2)
89: (2,1,3,1)
91: (2,1,2,1,1)
93: (2,1,1,2,1)
For leaders of identical runs we have
A335485.
A374637 counts compositions by sum of leaders of weakly increasing runs.
All of the following pertain to compositions in standard order:
- Constant compositions are
A272919.
Cf.
A056823,
A106356,
A188919,
A189076,
A238343,
A261982,
A333213,
A335480,
A335482,
A373948,
A374746,
A374768,
A375123.
-
stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
Select[Range[0,100],!Greater@@First/@Split[stc[#],LessEqual]&]
- or -
stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
Select[Range[0,100],MatchQ[stc[#],{_,x_,_,z_,y_,_}/;x<=y
A375296
Numbers k such that the leaders of maximal weakly increasing runs in the reverse of the k-th composition in standard order (row k of A228351) are not strictly decreasing.
Original entry on oeis.org
13, 25, 27, 29, 41, 45, 49, 51, 53, 54, 55, 57, 59, 61, 77, 81, 82, 83, 89, 91, 93, 97, 99, 101, 102, 103, 105, 107, 108, 109, 110, 111, 113, 115, 117, 118, 119, 121, 123, 125, 141, 145, 153, 155, 157, 161, 162, 163, 165, 166, 167, 169, 173, 177, 179, 181, 182
Offset: 1
The sequence together with corresponding compositions begins:
13: (1,2,1)
25: (1,3,1)
27: (1,2,1,1)
29: (1,1,2,1)
41: (2,3,1)
45: (2,1,2,1)
49: (1,4,1)
51: (1,3,1,1)
53: (1,2,2,1)
54: (1,2,1,2)
55: (1,2,1,1,1)
57: (1,1,3,1)
59: (1,1,2,1,1)
61: (1,1,1,2,1)
A374637 counts compositions by sum of leaders of weakly increasing runs.
All of the following pertain to compositions in standard order:
- Constant compositions are
A272919.
Cf.
A056823,
A106356,
A188919,
A189076,
A238343,
A333213,
A335480,
A335482,
A373948,
A374630,
A374633,
A374768,
A375123.
-
stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
Select[Range[0,100],!Greater@@First/@Split[Reverse[stc[#]],LessEqual]&]
- or -
stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
Select[Range[0,300],MatchQ[stc[#],{_,y_,z_,_,x_,_}/;x<=y
A375139
Numbers k such that the leaders of strictly increasing runs in the k-th composition in standard order are not weakly decreasing.
Original entry on oeis.org
26, 50, 53, 58, 90, 98, 100, 101, 106, 107, 114, 117, 122, 154, 164, 178, 181, 186, 194, 196, 197, 201, 202, 203, 210, 212, 213, 214, 215, 218, 226, 228, 229, 234, 235, 242, 245, 250, 282, 306, 309, 314, 324, 329, 346, 354, 356, 357, 362, 363, 370, 373, 378
Offset: 1
The terms together with corresponding compositions begin:
26: (1,2,2)
50: (1,3,2)
53: (1,2,2,1)
58: (1,1,2,2)
90: (2,1,2,2)
98: (1,4,2)
100: (1,3,3)
101: (1,3,2,1)
106: (1,2,2,2)
107: (1,2,2,1,1)
114: (1,1,3,2)
117: (1,1,2,2,1)
122: (1,1,1,2,2)
154: (3,1,2,2)
164: (2,3,3)
178: (2,1,3,2)
181: (2,1,2,2,1)
186: (2,1,1,2,2)
For leaders of identical runs we have
A335485.
Ranked by positions of non-weakly decreasing rows in
A374683.
The complement is counted by
A374697.
Compositions of this type are counted by
A375135.
A374700 counts compositions by sum of leaders of strictly increasing runs.
All of the following pertain to compositions in standard order:
-
stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
Select[Range[0,100],!GreaterEqual@@First/@Split[stc[#],Less]&]
Showing 1-6 of 6 results.
Comments