cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A337199 Binary weight of A337194(n) = 1+A000265(sigma(n)), where A000265(k) gives the odd part of k.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 3, 1, 4, 2, 1, 1, 4, 3, 1, 2, 3, 2, 2, 1, 1, 4, 5, 2, 3, 3, 1, 2, 1, 2, 4, 1, 3, 1, 1, 3, 1, 3, 2, 2, 1, 1, 2, 2, 3, 3, 4, 1, 2, 1, 3, 2, 5, 5, 1, 3, 1, 3, 2, 1, 4, 4, 5, 1, 3, 1, 2, 1, 1, 3, 4, 2, 5, 3, 3, 3, 4, 1
Offset: 1

Views

Author

Antti Karttunen, Aug 20 2020

Keywords

Crossrefs

Programs

Formula

a(n) = A000120(A337194(n)) = A000120(A336698(n)).

A337200 Lexicographically earliest infinite sequence such that a(i) = a(j) => A278222(A337194(i)) = A278222(A337194(j)), for all i, j >= 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 3, 3, 4, 5, 1, 3, 1, 1, 1, 5, 4, 1, 1, 3, 1, 1, 1, 2, 1, 6, 3, 1, 1, 6, 5, 1, 4, 5, 3, 3, 1, 1, 6, 7, 3, 5, 2, 1, 3, 1, 4, 6, 1, 5, 1, 1, 2, 1, 5, 3, 3, 1, 1, 3, 3, 5, 5, 6, 1, 3, 1, 5, 4, 7, 7, 1, 5, 1, 2, 3, 1, 6, 6, 8, 1, 5, 1, 3, 1, 1, 5, 9, 3, 10, 5, 2, 2, 9, 1
Offset: 1

Views

Author

Antti Karttunen, Aug 20 2020

Keywords

Comments

Restricted growth sequence transform of f(n) = A278222(A337194(n)).
For all i, j: A324400(i) = A324400(j) => a(i) = a(j) => A337199(i) = A337199(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A000265(n) = (n>>valuation(n, 2));
    A337194(n) = (1+A000265(sigma(n)));
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A278222(n) = A046523(A005940(1+n));
    v337200 = rgs_transform(vector(up_to, n, A278222(A337194(n))));
    A337200(n) = v337200[n];

A337201 Lexicographically earliest infinite sequence such that a(i) = a(j) => A278221(A337194(i)) = A278221(A337194(j)), for all i, j >= 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 3, 3, 4, 5, 1, 3, 1, 1, 1, 5, 4, 1, 1, 3, 1, 1, 1, 2, 1, 6, 3, 1, 1, 6, 5, 1, 4, 5, 3, 3, 1, 1, 7, 8, 3, 3, 2, 1, 3, 1, 4, 6, 1, 5, 1, 1, 2, 1, 5, 3, 4, 1, 1, 3, 3, 2, 9, 7, 1, 4, 1, 5, 4, 8, 10, 1, 5, 1, 2, 11, 1, 6, 6, 12, 1, 5, 1, 3, 1, 1, 3, 13, 3, 14, 15, 2, 2, 16, 1
Offset: 1

Views

Author

Antti Karttunen, Aug 20 2020

Keywords

Comments

Restricted growth sequence transform of f(n) = A278221(A337194(n)).
For all i, j: A324400(i) = A324400(j) => a(i) = a(j) => A337198(i) = A337198(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A000265(n) = (n>>valuation(n, 2));
    A337194(n) = (1+A000265(sigma(n)));
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523
    A122111(n) = if(1==n,n,my(f=factor(n), es=Vecrev(f[,2]),is=concat(apply(primepi,Vecrev(f[,1])),[0]),pri=0,m=1); for(i=1, #es, pri += es[i]; m *= prime(pri)^(is[i]-is[1+i])); (m));
    A278221(n) = A046523(A122111(n));
    v337201 = rgs_transform(vector(up_to, n, A278221(A337194(n))));
    A337201(n) = v337201[n];

A342465 a(n) = A329697(A337194(n)).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 0, 1, 0, 0, 0, 2, 1, 0, 0, 1, 0, 0, 0, 2, 0, 3, 1, 0, 0, 3, 2, 0, 1, 2, 1, 1, 0, 0, 3, 4, 1, 2, 2, 0, 1, 0, 1, 3, 0, 2, 0, 0, 2, 0, 2, 1, 2, 0, 0, 1, 1, 4, 3, 3, 0, 2, 0, 2, 1, 4, 3, 0, 2, 0, 2, 1, 0, 3, 3, 4, 0, 2, 0, 1, 0, 0, 2, 4, 1, 4, 2, 2, 2, 3, 0
Offset: 1

Views

Author

Antti Karttunen, Mar 16 2021

Keywords

Crossrefs

Programs

Formula

a(n) = A329697(A336698(n)) = A329697(A337194(n)).

A342466 a(n) = A336466(1+A000265(sigma(n))), where A336466 is fully multiplicative with a(p) = A000265(p-1) for p prime, and A000265(k) is the odd part of k.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 3, 1, 11, 1, 1, 1, 11, 5, 1, 1, 5, 1, 1, 1, 1, 7, 23, 1, 1, 3, 1, 1, 1, 1, 11, 1, 5, 1, 1, 3, 1, 5, 1, 1, 1, 1, 1, 1, 9, 9, 7, 1, 1, 1, 5, 1, 23, 15, 1, 5, 1, 3, 1, 1, 11, 11, 29, 1, 5, 1, 1, 1, 1, 1, 21, 1, 27, 3, 3, 3, 13, 1
Offset: 1

Views

Author

Antti Karttunen, Mar 16 2021

Keywords

Crossrefs

Programs

Formula

a(n) = A336466(A336698(n)) = A336466(A337194(n)).
a(n) = A000265(A003958(1+A161942(n))).
Previous Showing 11-15 of 15 results.