cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A337195 The 2-adic valuation of 1+A000265(sigma(n)), where A000265 gives the odd part.

Original entry on oeis.org

1, 2, 1, 3, 2, 2, 1, 4, 1, 1, 2, 3, 3, 2, 2, 5, 1, 3, 1, 1, 1, 1, 2, 4, 5, 1, 1, 3, 4, 1, 1, 6, 2, 2, 2, 2, 2, 4, 3, 1, 1, 2, 2, 1, 3, 1, 2, 5, 1, 1, 1, 1, 2, 4, 1, 4, 1, 1, 4, 1, 5, 2, 1, 7, 1, 1, 1, 6, 2, 1, 1, 2, 1, 1, 5, 2, 2, 1, 1, 1, 1, 6, 1, 3, 2, 1, 4, 1, 1, 1, 3, 1, 1, 1, 4, 6, 1, 2, 3, 1, 2, 2, 1, 1, 2
Offset: 1

Views

Author

Antti Karttunen, Aug 18 2020

Keywords

Crossrefs

Programs

Formula

a(n) = A007814(A337194(n)) = A007814(1+A000265(A000203(n))).

A337338 Numerator of (1+sigma(s)) / ((s+1)/2), where s is the square of n prime-shifted once (s = A003961(n)^2 = A003961(n^2)).

Original entry on oeis.org

2, 14, 32, 122, 58, 404, 134, 1094, 782, 742, 184, 3752, 308, 346, 1768, 9842, 382, 10154, 554, 6898, 4124, 2380, 872, 33884, 2802, 3992, 19532, 1238, 994, 22972, 1408, 88574, 5674, 4954, 7582, 94502, 1724, 7190, 9518, 62302, 1894, 53600, 2258, 22144, 44518, 11324, 2864, 305072, 16106, 36414, 11812, 37148, 3542, 253904
Offset: 1

Views

Author

Antti Karttunen, Aug 24 2020

Keywords

Crossrefs

Cf. A337339 (denominators).

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A337338(n) = { my(s=(A003961(n)^2),t=1+sigma(s)); (t/gcd(t, (s+1)/2)); };
    \\ Or as:
    A337338(n) = { my(s=A003961(n^2)); numerator((1+sigma(s))/((s+1)/2)); };

Formula

a(n) = A337194(A003961(n)^2) / A337337(n).

A337196 The 3-adic valuation of 1+A000265(sigma(n)), where A000265 gives the odd part.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Antti Karttunen, Aug 18 2020

Keywords

Crossrefs

Cf. A337197 (the first occurrence of each n).

Programs

Formula

a(n) = A007949(A337194(n)) = A007949(1+A000265(A000203(n))).
a(n) = A007949(A336698(n)).

A342466 a(n) = A336466(1+A000265(sigma(n))), where A336466 is fully multiplicative with a(p) = A000265(p-1) for p prime, and A000265(k) is the odd part of k.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 3, 1, 11, 1, 1, 1, 11, 5, 1, 1, 5, 1, 1, 1, 1, 7, 23, 1, 1, 3, 1, 1, 1, 1, 11, 1, 5, 1, 1, 3, 1, 5, 1, 1, 1, 1, 1, 1, 9, 9, 7, 1, 1, 1, 5, 1, 23, 15, 1, 5, 1, 3, 1, 1, 11, 11, 29, 1, 5, 1, 1, 1, 1, 1, 21, 1, 27, 3, 3, 3, 13, 1
Offset: 1

Views

Author

Antti Karttunen, Mar 16 2021

Keywords

Crossrefs

Programs

Formula

a(n) = A336466(A336698(n)) = A336466(A337194(n)).
a(n) = A000265(A003958(1+A161942(n))).
Previous Showing 11-14 of 14 results.