cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-44 of 44 results.

A316977 Number of series-reduced rooted trees whose leaves are {1, 1, 2, 2, 3, 3, ..., n, n}.

Original entry on oeis.org

1, 12, 575, 66080, 13830706, 4566898564, 2181901435364, 1422774451251512, 1213875872220833664, 1312273759143855989808, 1752860078230602866012288, 2834766624822130489716563008, 5458358420687156358967526721408, 12339106957086349462329140342122112
Offset: 1

Views

Author

Gus Wiseman, Jul 17 2018

Keywords

Comments

A rooted tree is series-reduced if every non-leaf node has at least two branches.

Examples

			The a(2) = 12 trees are (1(1(22))), (1(2(12))), (1(122)), (2(1(12))), (2(2(11))), (2(112)), ((11)(22)), ((12)(12)), (11(22)), (12(12)), (22(11)), (1122).
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    gro[m_]:=If[Length[m]==1,m,Union[Sort/@Join@@(Tuples[gro/@#]&/@Select[mps[m],Length[#]>1&])]];
    Table[Length[gro[Ceiling[Range[1/2,n,1/2]]]],{n,4}]
  • PARI
    \\ See links in A339645 for combinatorial species functions.
    cycleIndexSeries(n)={my(v=vector(2*n), vars=vector(2*n-2,i,sv(2+i))); v[1]=sv(1); for(n=2, #v, v[n] = substvec(polcoef( sExp(x*Ser(v[1..n])), n ), vars[1..n-2], vector(n-2))); sCartProd(x*Ser(v), 1/(1-x^2*symGroupCycleIndex(2)) + O(x*x^(2*n)))}
    seq(n)={my(p=substvec(cycleIndexSeries(n), [sv(1), sv(2)], [1,1])); vector(n, n, polcoef(p,2*n))} \\ Andrew Howroyd, Jan 02 2021

Formula

a(n) = A292505(A061742(n)). - Andrew Howroyd, Nov 19 2018

Extensions

Terms a(6) and beyond from Andrew Howroyd, Jan 02 2021

A323389 The number of connected, unlabeled, undirected, edge-signed cubic graphs (admitting loops and multiedges) on 2n vertices where the degree of the first sign is 2 at each node.

Original entry on oeis.org

1, 2, 5, 19, 88, 553, 4619, 49137, 646815, 10053183, 178725865, 3555840644, 78048875298, 1871066903575, 48617053973267, 1360733669185473, 40810827325698897, 1305690378666580997, 44387116312631271929, 1597768080980647428027, 60710507893875818581964
Offset: 0

Views

Author

R. J. Mathar, Jan 13 2019

Keywords

Comments

Obtained from the cubic graphs A005967 (connected undirected cubic graphs that may have loops and/or multiedges) by signing each edge with a plus or a minus such that two pluses and one minus meet at each vertex.

Crossrefs

Cf. A005967 (unsigned), A054499 (only one cycle of pluses), A170946 (directed plus-edges).

Programs

  • PARI
    \\ See A339645 for combinatorial species functions.
    cycleIndexSeries(n)={1+sLog(sCartProd(sExp(dihedralGroupSeries(n)), sExp(symGroupCycleIndex(2)*x^2 + O(x*x^n))))}
    seq(n)={Vec(substpol(OgfSeries(cycleIndexSeries(2*n)), x^2, x))} \\ Andrew Howroyd, May 05 2023

Extensions

Terms a(6) and beyond from Andrew Howroyd, May 05 2023

A323786 Number of non-isomorphic weight-n multisets of multisets of non-singleton multisets.

Original entry on oeis.org

1, 0, 2, 3, 19, 39, 200, 615, 2849, 11174, 52377, 239269, 1191090, 6041975, 32275288, 177797719, 1017833092, 6014562272, 36717301665, 230947360981, 1495562098099, 9956230757240, 68070158777759, 477439197541792, 3432259679880648, 25267209686664449
Offset: 0

Views

Author

Gus Wiseman, Jan 28 2019

Keywords

Comments

All sets and multisets must be finite, and only the outermost may be empty.
The weight of an atom is 1, and the weight of a multiset is the sum of weights of its elements, counting multiplicity.

Examples

			Non-isomorphic representatives of the a(4) = 19 multiset partitions:
  {{1111}}      {{1112}}      {{1123}}      {{1234}}
  {{11}{11}}    {{1122}}      {{11}{23}}    {{12}{34}}
  {{11}}{{11}}  {{11}{12}}    {{12}{13}}    {{12}}{{34}}
                {{11}{22}}    {{11}}{{23}}
                {{12}{12}}    {{12}}{{13}}
                {{11}}{{12}}
                {{11}}{{22}}
                {{12}}{{12}}
Non-isomorphic representatives of the a(5) = 39 multiset partitions:
  {{11111}}      {{11112}}      {{11123}}      {{11234}}      {{12345}}
  {{11}{111}}    {{11122}}      {{11223}}      {{11}{234}}    {{12}{345}}
  {{11}}{{111}}  {{11}{112}}    {{11}{123}}    {{12}{134}}    {{12}}{{345}}
                 {{11}{122}}    {{11}{223}}    {{23}{114}}
                 {{12}{111}}    {{12}{113}}    {{11}}{{234}}
                 {{12}{112}}    {{12}{123}}    {{12}}{{134}}
                 {{22}{111}}    {{13}{122}}    {{23}}{{114}}
                 {{11}}{{112}}  {{23}{111}}
                 {{11}}{{122}}  {{11}}{{123}}
                 {{12}}{{111}}  {{11}}{{223}}
                 {{12}}{{112}}  {{12}}{{113}}
                 {{22}}{{111}}  {{12}}{{123}}
                                {{13}}{{122}}
                                {{23}}{{111}}
		

Crossrefs

Programs

  • PARI
    \\ See links in A339645 for combinatorial species functions.
    seq(n)={my(A=symGroupSeries(n)); NumUnlabeledObjsSeq(sCartProd(sExp(A), sExp(sExp(A-x*sv(1)))))} \\ Andrew Howroyd, Jan 17 2023

Extensions

Terms a(8) and beyond from Andrew Howroyd, Jan 17 2023

A339234 Number of series-reduced tanglegrams with n unlabeled leaves.

Original entry on oeis.org

1, 1, 5, 51, 757, 16416, 461231, 16021550, 662197510, 31749450007, 1732478051823, 106025572201434, 7192665669790893, 535756912504764218, 43471544417828923777, 3816784803681841133512, 360546156617986177328681, 36462349359125513109697520, 3930704977357944446111295571
Offset: 1

Views

Author

Andrew Howroyd, Jan 01 2021

Keywords

Comments

A tanglegram is a pair of trees with their leaves superimposed. The original tanglegram sequence (A258620) used rooted binary trees. This variation uses planted series-reduced trees.

Examples

			Two of the 5 tanglegrams for a(3) are illustrated (A,B are the roots of the trees and o marks the leaves that are shared between the two trees)
           A             A
          /  \          /  \
         /   / \       /   / \
        o   o   o     o   o   o
         \  |  /       \ /   /
          \ | /          \  /
            B              B
		

Crossrefs

Cf. A000669 (series-reduced trees), A258620 (binary tanglegrams), A339645.

Programs

  • PARI
    \\ See links in A339645 for combinatorial species functions.
    seriesReducedTrees(n)={my(v=vector(n)); v[1]=sv(1); for(n=2, #v, v[n] = polcoef( sExp(x*Ser(v[1..n])), n )); x*Ser(v)}
    NumUnlabeledObjsSeq(sCartPower(seriesReducedTrees(15), 2))
Previous Showing 41-44 of 44 results.