cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-11 of 11 results.

A340826 Decimal expansion of Cl_2(Pi/5), where Cl_2 is the Clausen function of order 2.

Original entry on oeis.org

9, 2, 3, 7, 5, 5, 1, 6, 8, 1, 0, 0, 5, 3, 5, 3, 0, 8, 7, 1, 1, 9, 8, 6, 0, 2, 9, 7, 9, 3, 0, 2, 4, 3, 5, 3, 9, 6, 6, 2, 7, 9, 0, 0, 6, 4, 1, 2, 5, 1, 7, 2, 5, 1, 7, 0, 7, 7, 1, 2, 8, 4, 8, 3, 2, 5, 1, 5, 0, 9, 8, 3, 3, 2, 5, 3, 0, 9, 7, 5, 7, 2, 8, 7, 2, 8, 3, 2, 2, 1, 8, 0, 1, 1, 2, 2, 5, 9, 9, 9, 6, 2, 6, 3, 5
Offset: 0

Views

Author

Artur Jasinski, Jan 23 2021

Keywords

Examples

			0.9237551681005353087119860297930...
		

Crossrefs

Cf. A006752 (Cl_2(Pi/2) = Catalan's constant), A143298 (Cl_2(Pi/3) = Gieseking's constant), A261025 (Cl_2(Pi/4)), A261026 (Cl_2(3*Pi/4)), A261027 (Cl_2(Pi/6)), A261028 (Cl_2(5*Pi/6)), A340628, A340629.

Programs

  • Mathematica
    Cl2[x_] := (I/2)*(PolyLog[2, Exp[-I*x]] - PolyLog[2, Exp[I*x]]); RealDigits[Re[Cl2[Pi/5]], 10, 105] // First
    N[Pi*(ArcCsch[2] + Log[2*Pi*BarnesG[9/10]^10 / BarnesG[11/10]^10])/5, 120] (* Vaclav Kotesovec, Jan 23 2021 *)

Formula

A = Cl_2(Pi/5).
B = Cl_2(2*Pi/5).
C = Cl_2(3*Pi/5).
D = Cl_2(4*Pi/5).
4*(A^2 + C^2) = 5*(B^2 + D^2).
B = 2*A - 2*D.
D = 2*B - 2*C.
2*C = 4*A - 5*D.
B = -D + sqrt(A*(2*C+D)+D^2).
B^2 + D^2 = 4*Pi^4/(325*A340628^2).
B^2 + D^2 = (13/1125)*A340629^2*Pi^4.
Equals Pi*(2*log(G(9/10) / G(11/10)) + log(Pi*(1+sqrt(5)))/5), where G is the Barnes G-function. - Vaclav Kotesovec, Jan 23 2021
Previous Showing 11-11 of 11 results.