cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A342890 Triangle read by rows: T(n,k) = generalized binomial coefficients (n,k)_11 (n >= 0, 0 <= k <= n).

Original entry on oeis.org

1, 1, 1, 1, 12, 1, 1, 78, 78, 1, 1, 364, 2366, 364, 1, 1, 1365, 41405, 41405, 1365, 1, 1, 4368, 496860, 2318680, 496860, 4368, 1, 1, 12376, 4504864, 78835120, 78835120, 4504864, 12376, 1, 1, 31824, 32821152, 1837984512, 6892441920, 1837984512, 32821152, 31824, 1
Offset: 0

Views

Author

N. J. A. Sloane, Apr 01 2021

Keywords

Comments

For references, links, programs, etc., see earlier sequences in this series, especially A342889.

Examples

			Triangle begins:
  [1],
  [1, 1],
  [1, 12, 1],
  [1, 78, 78, 1],
  [1, 364, 2366, 364, 1],
  [1, 1365, 41405, 41405, 1365, 1],
  [1, 4368, 496860, 2318680, 496860, 4368, 1],
  [1, 12376, 4504864, 78835120, 78835120, 4504864, 12376, 1],
  [1, 31824, 32821152, 1837984512, 6892441920, 1837984512, 32821152, 31824, 1],
...
		

Crossrefs

Triangles of generalized binomial coefficients (n,k)_m (or generalized Pascal triangles) for m = 1,...,12: A007318 (Pascal), A001263, A056939, A056940, A056941, A142465, A142467, A142468, A174109, A342889, A342890, A342891.

Programs

  • PARI
    f(n, k, m) = prod(j=1, k, binomial(n-j+m, m)/binomial(j-1+m, m));
    T(n, k) = f(n, k, 11); \\ Seiichi Manyama, Apr 02 2021

Formula

The generalized binomial coefficient (n,k)m = Product{j=1..k} binomial(n+m-j,m)/binomial(j+m-1,m).

A342972 Triangle T(n,k) read by rows: T(n,k) = Product_{j=0..n-1} binomial(n+j,k)/binomial(k+j,k).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 10, 10, 1, 1, 35, 105, 35, 1, 1, 126, 1176, 1176, 126, 1, 1, 462, 13860, 41580, 13860, 462, 1, 1, 1716, 169884, 1557270, 1557270, 169884, 1716, 1, 1, 6435, 2147145, 61408347, 184225041, 61408347, 2147145, 6435, 1
Offset: 0

Views

Author

Seiichi Manyama, Apr 01 2021

Keywords

Comments

Triangle read by rows: T(n,k) = generalized binomial coefficients (n,k)n where (n,k)_m is Product{j=1..k} binomial(n-j+m,m)/binomial(j-1+m,m).

Examples

			Triangle begins:
  1;
  1,    1;
  1,    3,       1;
  1,   10,      10,        1;
  1,   35,     105,       35,         1;
  1,  126,    1176,     1176,       126,        1;
  1,  462,   13860,    41580,     13860,      462,       1;
  1, 1716,  169884,  1557270,   1557270,   169884,    1716,    1;
  1, 6435, 2147145, 61408347, 184225041, 61408347, 2147145, 6435, 1;
		

Crossrefs

Row sums gives A342967.
Triangles of generalized binomial coefficients (n,k)_m (or generalized Pascal triangles) for m = 1,...,12: A007318 (Pascal), A001263, A056939, A056940, A056941, A142465, A142467, A142468, A174109, A342889, A342890, A342891.

Programs

  • Mathematica
    T[n_, k_] := Product[Binomial[n + i, k]/Binomial[k + i, k], {i, 0, n - 1}]; Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Amiram Eldar, Apr 01 2021 *)
  • PARI
    T(n, k) = prod(j=0, n-1, binomial(n+j, k)/binomial(k+j, k));
    
  • PARI
    T(n, k) = prod(j=0, k-1, binomial(2*n-1, n+j)/binomial(2*n-1, j));
    
  • PARI
    f(n, k, m) = prod(j=1, k, binomial(n-j+m, m)/binomial(j-1+m, m));
    T(n, k) = f(n, k, n);

Formula

T(n,k) = Product_{j=0..k-1} binomial(2*n-1,n+j)/binomial(2*n-1,j).
Previous Showing 11-12 of 12 results.