A378615 Number of non prime powers <= prime(n).
1, 1, 1, 2, 3, 4, 6, 7, 10, 13, 14, 18, 21, 22, 25, 29, 34, 35, 39, 42, 43, 48, 50, 55, 62, 65, 66, 69, 70, 73, 84, 86, 91, 92, 101, 102, 107, 112, 115, 119, 124, 125, 134, 135, 138, 139, 150, 161, 164, 165, 168, 173, 174, 182, 186, 191, 196, 197, 202, 205
Offset: 1
Keywords
Examples
The non prime powers counted under each term: n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=10 ------------------------------------------------- 1 1 1 6 10 12 15 18 22 28 1 6 10 14 15 21 26 1 6 12 14 20 24 1 10 12 18 22 6 10 15 21 1 6 14 20 1 12 18 10 15 6 14 1 12 10 6 1
Crossrefs
Programs
-
Mathematica
Table[Length[Select[Range[Prime[n]],Not@*PrimePowerQ]],{n,100}]
-
Python
from sympy import prime, primepi, integer_nthroot def A378615(n): return int((p:=prime(n))-n-sum(primepi(integer_nthroot(p,k)[0]) for k in range(2,p.bit_length()))) # Chai Wah Wu, Dec 07 2024
Formula
a(n) = prime(n) - A027883(n). - Chai Wah Wu, Dec 08 2024
Comments