A364217 Numbers k such that k and k+1 are both Jacobsthal-Niven numbers (A364216).
1, 2, 3, 8, 11, 14, 15, 27, 32, 42, 43, 44, 45, 51, 56, 75, 86, 87, 92, 95, 99, 104, 125, 128, 135, 144, 155, 171, 176, 182, 183, 195, 204, 264, 267, 275, 287, 305, 344, 363, 375, 387, 428, 444, 455, 474, 497, 512, 524, 535, 544, 545, 552, 555, 581, 605, 623, 639
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
consecJacobsthalNiven[kmax_, len_] := Module[{m = 1, c = Table[False, {len}], s = {}}, Do[c = Join[Rest[c], {Divisible[k, DigitCount[m, 2, 1]]}]; While[m++; OddQ[IntegerExponent[m, 2]]]; If[And @@ c, AppendTo[s, k - len + 1]], {k, 1, kmax}]; s]; consecJacobsthalNiven[640, 2]
-
PARI
lista(kmax, len) = {my(m = 1, c = vector(len)); for(k = 1, kmax, c = concat(vecextract(c, "^1"), !(k % sumdigits(m, 2))); until(valuation(m, 2)%2 == 0, m++); if(vecsum(c) == len, print1(k-len+1, ", ")));} lista(640, 2)
Comments