cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-34 of 34 results.

A350251 Number of non-alternating permutations of the multiset of prime factors of n.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 2, 0, 0, 0, 1, 0, 2, 0, 2, 0, 0, 0, 4, 1, 0, 1, 2, 0, 2, 0, 1, 0, 0, 0, 4, 0, 0, 0, 4, 0, 2, 0, 2, 2, 0, 0, 5, 1, 2, 0, 2, 0, 4, 0, 4, 0, 0, 0, 8, 0, 0, 2, 1, 0, 2, 0, 2, 0, 2, 0, 9, 0, 0, 2, 2, 0, 2, 0, 5, 1, 0, 0, 8, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Jan 08 2022

Keywords

Comments

A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no alternating permutations, even though it does have the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2).

Examples

			The a(n) permutations for selected n:
n = 4    12    24     48      60     72      90     96       120
   ----------------------------------------------------------------
    22   223   2223   22223   2235   22233   2335   222223   22235
         322   2232   22232   2253   22323   2353   222232   22253
               2322   22322   2352   22332   2533   222322   22325
               3222   23222   2532   23223   3235   223222   22352
                      32222   3225   23322   3325   232222   22523
                              3522   32223   3352   322222   22532
                              5223   32232   3532            23225
                              5322   32322   5233            23522
                                     33222   5323            25223
                                             5332            25322
                                                             32225
                                                             32252
                                                             32522
                                                             35222
                                                             52223
                                                             52232
                                                             52322
                                                             53222
		

Crossrefs

The non-anti-run case is A336107, complement A335452.
The complement is counted by A345164, with twins A344606.
Positions of nonzero terms are A345171, counted by A345165.
Positions of zeros are A345172, counted by A345170.
Compositions of this type are counted by A345192, ranked by A345168.
Ordered factorizations of this type counted by A348613, complement A348610.
Compositions weakly of this type are counted by A349053, ranked by A349057.
The weak version is A349797, complement A349056.
The case that is also weakly alternating is A349798, compositions A349800.
Patterns of this type are counted by A350252, complement A345194.
A001250 counts alternating permutations, complement A348615.
A003242 counts Carlitz (anti-run) compositions.
A008480 counts permutations of prime factors (ordered prime factorizations).
A025047/A025048/A025049 count alternating compositions, ranked by A345167.
A056239 adds up prime indices, row sums of A112798 (row lengths A001222).
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.
A344616 gives the alternating sum of prime indices, reverse A316524.
A349052/A129852/A129853 count weakly alternating compositions.

Programs

  • Mathematica
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]] ==Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    Table[Length[Select[Permutations[Flatten[ ConstantArray@@@FactorInteger[n]]],!wigQ[#]&]],{n,100}]

Formula

a(n) = A008480(n) - A345164(n).

A345193 Heinz numbers of non-twin (x,x) inseparable partitions.

Original entry on oeis.org

8, 16, 24, 27, 32, 40, 48, 54, 56, 64, 80, 81, 88, 96, 104, 112, 125, 128, 135, 136, 144, 152, 160, 162, 176, 184, 189, 192, 208, 224, 232, 240, 243, 248, 250, 256, 272, 288, 296, 297, 304, 320, 324, 328, 336, 343, 344, 351, 352, 368, 375, 376, 384, 400, 405
Offset: 1

Views

Author

Gus Wiseman, Jun 17 2021

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
A multiset is separable if it has an anti-run permutation (no adjacent parts equal). This is equivalent to having maximal multiplicity greater than one plus the sum of the remaining multiplicities. For example, the partition (3,2,2,2,1) has the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2), so is separable.

Examples

			The sequence of terms together with their prime indices begins:
      8: {1,1,1}          112: {1,1,1,1,4}        232: {1,1,1,10}
     16: {1,1,1,1}        125: {3,3,3}            240: {1,1,1,1,2,3}
     24: {1,1,1,2}        128: {1,1,1,1,1,1,1}    243: {2,2,2,2,2}
     27: {2,2,2}          135: {2,2,2,3}          248: {1,1,1,11}
     32: {1,1,1,1,1}      136: {1,1,1,7}          250: {1,3,3,3}
     40: {1,1,1,3}        144: {1,1,1,1,2,2}      256: {1,1,1,1,1,1,1,1}
     48: {1,1,1,1,2}      152: {1,1,1,8}          272: {1,1,1,1,7}
     54: {1,2,2,2}        160: {1,1,1,1,1,3}      288: {1,1,1,1,1,2,2}
     56: {1,1,1,4}        162: {1,2,2,2,2}        296: {1,1,1,12}
     64: {1,1,1,1,1,1}    176: {1,1,1,1,5}        297: {2,2,2,5}
     80: {1,1,1,1,3}      184: {1,1,1,9}          304: {1,1,1,1,8}
     81: {2,2,2,2}        189: {2,2,2,4}          320: {1,1,1,1,1,1,3}
     88: {1,1,1,5}        192: {1,1,1,1,1,1,2}    324: {1,1,2,2,2,2}
     96: {1,1,1,1,1,2}    208: {1,1,1,1,6}        328: {1,1,1,13}
    104: {1,1,1,6}        224: {1,1,1,1,1,4}      336: {1,1,1,1,2,4}
		

Crossrefs

A000041 counts integer partitions.
A001248 lists Heinz numbers of twins (x,x).
A001250 counts wiggly permutations.
A003242 counts anti-run compositions.
A025047 counts wiggly compositions (ascend: A025048, descend: A025049).
A056239 adds up prime indices, row sums of A112798.
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.
A344740 counts twins and partitions w/ wiggly permutation, rank: A344742.
A345164 counts wiggly permutations of prime indices (with twins: A344606).
A345165 counts partitions without a wiggly permutation, ranked by A345171.
A345170 counts partitions with a wiggly permutation, ranked by A345172.
A345192 counts non-wiggly compositions.

Programs

Formula

Complement of A001248 in A335448.

A350250 Numbers k such that the k-th composition in standard order is a non-alternating permutation of an initial interval of positive integers.

Original entry on oeis.org

37, 52, 549, 550, 556, 564, 581, 600, 616, 649, 657, 712, 786, 802, 836, 840, 16933, 16934, 16937, 16940, 16946, 16948, 16965, 16977, 16984, 16994, 17000, 17033, 17041, 17092, 17096, 17170, 17186, 17220, 17224, 17445, 17446, 17452, 17460, 17541, 17569, 17584
Offset: 1

Views

Author

Gus Wiseman, Jan 13 2022

Keywords

Comments

A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The terms and corresponding permutations begin:
     37: (3,2,1)
     52: (1,2,3)
    549: (4,3,2,1)
    550: (4,3,1,2)
    556: (4,2,1,3)
    564: (4,1,2,3)
    581: (3,4,2,1)
    600: (3,2,1,4)
    616: (3,1,2,4)
    649: (2,4,3,1)
    657: (2,3,4,1)
    712: (2,1,3,4)
    786: (1,4,3,2)
    802: (1,3,4,2)
    836: (1,2,4,3)
    840: (1,2,3,4)
  16933: (5,4,3,2,1)
		

Crossrefs

This is the non-alternating case of A333218.
This is the restriction of A345168 to permutations, complement A345167.
These partitions are counted by A348615, complement A001250.
A003242 counts anti-run compositions, patterns A005649.
A025047 counts alternating compositions, directed A025048/A025049.
A345192 counts non-alternating compositions.
A345194 counts alternating patterns, complement A350252.
Statistics of standard compositions:
- Length is A000120.
- Sum is A070939.
- Heinz number is A333219.
- Number of maximal anti-runs is A333381.
- Number of distinct parts is A334028.
Classes of standard compositions:
- Weakly decreasing compositions (partitions) are A114994, strict A333256.
- Weakly increasing compositions (multisets) are A225620, strict A333255.
- Strict compositions are A233564.
- Constant compositions are A272919.
- Anti-run compositions are A333489, complement A348612.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[ Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    wigQ[y_]:=Or[Length[y]==0, Length[Split[y]]==Length[y] &&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    Select[Range[0,1000],(Sort[stc[#]]==Range[Length[stc[#]]]&&!wigQ[stc[#]])&]

A350353 Numbers whose multiset of prime factors has a permutation that is not weakly alternating.

Original entry on oeis.org

30, 36, 42, 60, 66, 70, 72, 78, 84, 90, 100, 102, 105, 108, 110, 114, 120, 126, 130, 132, 138, 140, 144, 150, 154, 156, 165, 168, 170, 174, 180, 182, 186, 190, 195, 196, 198, 200, 204, 210, 216, 220, 222, 225, 228, 230, 231, 234, 238, 240, 246, 252, 255, 258
Offset: 1

Views

Author

Gus Wiseman, Jan 13 2022

Keywords

Comments

We define a sequence to be weakly alternating if it is alternately weakly increasing and weakly decreasing, starting with either.

Examples

			The terms together with a (generally not unique) non-weakly alternating permutation of each multiset of prime indices begin:
   30 : (1,2,3)       100 : (1,3,3,1)
   36 : (1,2,2,1)     102 : (1,2,7)
   42 : (1,2,4)       105 : (2,3,4)
   60 : (1,1,2,3)     108 : (1,2,2,1,2)
   66 : (1,2,5)       110 : (1,3,5)
   70 : (1,3,4)       114 : (1,2,8)
   72 : (1,1,2,2,1)   120 : (1,1,1,2,3)
   78 : (1,2,6)       126 : (1,2,4,2)
   84 : (1,1,2,4)     130 : (1,3,6)
   90 : (1,2,3,2)     132 : (1,1,2,5)
		

Crossrefs

The strong version is A289553, complement A167171.
These are the positions of nonzero terms in A349797.
Below, WA = "weakly alternating":
- WA compositions are counted by A349052/A129852/A129853.
- Non-WA compositions are counted by A349053, ranked by A349057.
- WA permutations of prime factors = A349056, complement A349797.
- WA patterns are counted by A349058, complement A350138.
- WA ordered factorizations are counted by A349059, complement A350139.
- WA partitions are counted by A349060, complement A349061.
A001250 counts alternating permutations, complement A348615.
A008480 counts permutations of prime factors.
A025047 = alternating compositions, ranked by A345167, complement A345192.
A056239 adds up prime indices, row sums of A112798 (row lengths A001222).
A071321 gives the alternating sum of prime factors, reverse A071322.
A335452 counts anti-run permutations of prime factors, complement A336107.
A345164 = alternating permutations of prime factors, complement A350251.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    whkQ[y_]:=And@@Table[If[EvenQ[m],y[[m]]<=y[[m+1]],y[[m]]>=y[[m+1]]],{m,1,Length[y]-1}];
    Select[Range[100],Select[Permutations[primeMS[#]],!whkQ[#]&&!whkQ[-#]&]!={}&]
Previous Showing 31-34 of 34 results.