A350137
Nonsquarefree numbers whose prime signature, except possibly the first and last parts, is all even.
Original entry on oeis.org
4, 8, 9, 12, 16, 18, 20, 24, 25, 27, 28, 32, 36, 40, 44, 45, 48, 49, 50, 52, 54, 56, 63, 64, 68, 72, 75, 76, 80, 81, 88, 90, 92, 96, 98, 99, 100, 104, 108, 112, 116, 117, 121, 124, 125, 126, 128, 135, 136, 144, 147, 148, 152, 153, 160, 162, 164, 169, 171, 172
Offset: 1
The terms together with their prime indices begin:
4: {1,1}
8: {1,1,1}
9: {2,2}
12: {1,1,2}
16: {1,1,1,1}
18: {1,2,2}
20: {1,1,3}
24: {1,1,1,2}
25: {3,3}
27: {2,2,2}
28: {1,1,4}
32: {1,1,1,1,1}
36: {1,1,2,2}
40: {1,1,1,3}
44: {1,1,5}
45: {2,2,3}
48: {1,1,1,1,2}
This is the nonsquarefree case of the complement of
A349794.
These are the Heinz numbers of the partitions counted by
A349795.
A345164 = alternating permutations of prime indices, complement
A350251.
A349056 = weakly alternating permutations of prime indices.
Cf.
A000111,
A096441,
A117298,
A335433,
A335448,
A335452,
A344614,
A344652,
A344653,
A345173,
A349059,
A349797.
-
Select[Range[100],!SquareFreeQ[#]&&(PrimePowerQ[#]||And@@EvenQ/@Take[Last/@FactorInteger[#],{2,-2}])&]
A350140
Nonsquarefree numbers whose prime signature has at least one odd part other the first or last.
Original entry on oeis.org
60, 84, 120, 132, 140, 150, 156, 168, 204, 220, 228, 240, 260, 264, 270, 276, 280, 294, 300, 308, 312, 315, 336, 340, 348, 364, 372, 378, 380, 408, 420, 440, 444, 456, 460, 476, 480, 490, 492, 495, 516, 520, 528, 532, 540, 552, 560, 564, 572, 580, 585, 588
Offset: 1
The terms together with their Heinz partitions begin (A-E = 10-14):
60: (3211) 276: (9211) 420: (43211)
84: (4211) 280: (43111) 440: (53111)
120: (32111) 294: (4421) 444: (C211)
132: (5211) 300: (33211) 456: (82111)
140: (4311) 308: (5411) 460: (9311)
150: (3321) 312: (62111) 476: (7411)
156: (6211) 315: (4322) 480: (3211111)
168: (42111) 336: (421111) 490: (4431)
204: (7211) 340: (7311) 492: (D211)
220: (5311) 348: (A211) 495: (5322)
228: (8211) 364: (6411) 516: (E211)
240: (321111) 372: (B211) 520: (63111)
260: (6311) 378: (42221) 528: (521111)
264: (52111) 380: (8311) 532: (8411)
270: (32221) 408: (72111) 540: (322211)
Including all nonsquarefree numbers gives
A013929, complement
A005117.
The strict instead of non-strict version is
A336568, counted by
A347548.
A version for compositions allowing strict is
A349057, counted by
A349053.
These partitions are counted by
A349796.
The complement in nonsquarefree partitions is
A350137, counted by
A349795.
A003242 = Carlitz (anti-run) compositions.
A096441 = weakly alternating 0-appended partitions.
A345164 = alternating permutations of prime indices, complement
A350251.
A345170 = partitions w/ an alternating permutation, ranked by
A345172.
A349056 = weakly alternating permutations of prime indices.
A349798 = weakly but not strongly alternating perms of prime indices.
Cf.
A000111,
A047967,
A333213,
A335448,
A344615,
A344653,
A345173,
A349054,
A349059,
A349797,
A349799.
-
Select[Range[300],!SquareFreeQ[#]&&PrimeNu[#]>1&& !And@@EvenQ/@Take[Last/@FactorInteger[#],{2,-2}]&]
A350353
Numbers whose multiset of prime factors has a permutation that is not weakly alternating.
Original entry on oeis.org
30, 36, 42, 60, 66, 70, 72, 78, 84, 90, 100, 102, 105, 108, 110, 114, 120, 126, 130, 132, 138, 140, 144, 150, 154, 156, 165, 168, 170, 174, 180, 182, 186, 190, 195, 196, 198, 200, 204, 210, 216, 220, 222, 225, 228, 230, 231, 234, 238, 240, 246, 252, 255, 258
Offset: 1
The terms together with a (generally not unique) non-weakly alternating permutation of each multiset of prime indices begin:
30 : (1,2,3) 100 : (1,3,3,1)
36 : (1,2,2,1) 102 : (1,2,7)
42 : (1,2,4) 105 : (2,3,4)
60 : (1,1,2,3) 108 : (1,2,2,1,2)
66 : (1,2,5) 110 : (1,3,5)
70 : (1,3,4) 114 : (1,2,8)
72 : (1,1,2,2,1) 120 : (1,1,1,2,3)
78 : (1,2,6) 126 : (1,2,4,2)
84 : (1,1,2,4) 130 : (1,3,6)
90 : (1,2,3,2) 132 : (1,1,2,5)
These are the positions of nonzero terms in
A349797.
Below, WA = "weakly alternating":
- WA ordered factorizations are counted by
A349059, complement
A350139.
A008480 counts permutations of prime factors.
A335452 counts anti-run permutations of prime factors, complement
A336107.
A345164 = alternating permutations of prime factors, complement
A350251.
Cf.
A003242,
A335433,
A335448,
A344652,
A344653,
A345171,
A345172,
A345173,
A348379,
A348613,
A349798,
A350252,
A349800.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
whkQ[y_]:=And@@Table[If[EvenQ[m],y[[m]]<=y[[m+1]],y[[m]]>=y[[m+1]]],{m,1,Length[y]-1}];
Select[Range[100],Select[Permutations[primeMS[#]],!whkQ[#]&&!whkQ[-#]&]!={}&]
Comments