cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A346851 Number of partitions of the (n+5)-multiset {0,...,0,1,2,...,n} with five 0's.

Original entry on oeis.org

7, 19, 64, 250, 1098, 5317, 28009, 158926, 963913, 6211190, 42309103, 303388298, 2282055551, 17950884133, 147271359890, 1257195981186, 11143814730044, 102376602296871, 973137213352285, 9556384509085448, 96818497703286895, 1010691906511682642
Offset: 0

Views

Author

Alois P. Heinz, Aug 06 2021

Keywords

Comments

Also number of factorizations of 32 * Product_{i=1..n} prime(i+1).

Crossrefs

Row n=5 of A346426.
Cf. A346815.

A346852 Number of partitions of the (n+6)-multiset {0,...,0,1,2,...,n} with six 0's.

Original entry on oeis.org

11, 30, 105, 426, 1940, 9722, 52902, 309546, 1933171, 12809264, 89613587, 659255660, 5082342477, 40936552022, 343612396821, 2998777788602, 27155414911274, 254692965196866, 2470107851719160, 24734913573251578, 255396574564032443, 2715780007867965824
Offset: 0

Views

Author

Alois P. Heinz, Aug 06 2021

Keywords

Comments

Also number of factorizations of 2^6 * Product_{i=1..n} prime(i+1).

Crossrefs

Row n=6 of A346426.
Cf. A346816.

Programs

  • Python
    from sympy import divisors, isprime, primorial
    from functools import cache
    @cache
    def T(n, m): # after Indranil Ghosh in A001055
        if isprime(n): return 1 if n <= m else 0
        s = sum(T(n//d, d) for d in divisors(n)[1:-1] if d <= m)
        return s + 1 if n <= m else s
    def a(n): return (lambda x: T(x, x))(2**5 * primorial(n))
    print([a(n) for n in range(1, 11)]) # Michael S. Branicky, Nov 30 2021

A346853 Number of partitions of the (n+7)-multiset {0,...,0,1,2,...,n} with seven 0's.

Original entry on oeis.org

15, 45, 165, 696, 3281, 16972, 95129, 572402, 3670878, 24947043, 178812542, 1346450836, 10615403987, 87372899947, 748880541151, 6669235464674, 61589598614335, 588758112457852, 5816628899785745, 59303810671002372, 623158622145920252, 6740560881383009077
Offset: 0

Views

Author

Alois P. Heinz, Aug 06 2021

Keywords

Comments

Also number of factorizations of 2^7 * Product_{i=1..n} prime(i+1).

Crossrefs

Row n=7 of A346426.
Cf. A346817.

A346854 Number of partitions of the (n+8)-multiset {0,...,0,1,2,...,n} with eight 0's.

Original entry on oeis.org

22, 67, 254, 1106, 5372, 28582, 164528, 1015356, 6670707, 46393620, 339996570, 2615434647, 21049370938, 176737599452, 1544325166471, 14012688521840, 131775731386953, 1282115365540605, 12885980284689754, 133595285901023405, 1426880352574841614
Offset: 0

Views

Author

Alois P. Heinz, Aug 06 2021

Keywords

Comments

Also number of factorizations of 2^8 * Product_{i=1..n} prime(i+1).

Crossrefs

Row n=8 of A346426.
Cf. A346818.

A346855 Number of partitions of the (n+9)-multiset {0,...,0,1,2,...,n} with nine 0's.

Original entry on oeis.org

30, 97, 381, 1711, 8547, 46677, 275375, 1739545, 11685834, 83025806, 621066569, 4872976895, 39974624783, 341902273528, 3041542225849, 28082214612126, 268589416134352, 2656605574961663, 27131852677678804, 285720796755145126, 3098587829401297824
Offset: 0

Views

Author

Alois P. Heinz, Aug 06 2021

Keywords

Comments

Also number of factorizations of 2^9 * Product_{i=1..n} prime(i+1).

Crossrefs

Row n=9 of A346426.
Cf. A346819.

A346856 Number of partitions of the (n+10)-multiset {0,...,0,1,2,...,n} with ten 0's.

Original entry on oeis.org

42, 139, 562, 2593, 13285, 74304, 448391, 2894201, 19847703, 143835137, 1096662664, 8764456134, 73189589547, 636885970213, 5761393880423, 54067289148011, 525377389927629, 5277291236749488, 54713982758644746, 584707936871699621, 6432673787847769686
Offset: 0

Views

Author

Alois P. Heinz, Aug 06 2021

Keywords

Comments

Also number of factorizations of 2^10 * Product_{i=1..n} prime(i+1).

Crossrefs

Row n=10 of A346426.
Cf. A346820.

A346857 Number of partitions of the (n+4)-multiset {0,...,0,1,2,3,4} with n 0's.

Original entry on oeis.org

15, 52, 135, 296, 592, 1098, 1940, 3281, 5372, 8547, 13285, 20217, 30231, 44477, 64521, 92397, 130805, 183212, 254163, 349437, 476501, 644796, 866357, 1156291, 1533693, 2022351, 2652054, 3459718, 4491201, 5802986, 7464791, 9562004, 12199357, 15504516, 19633156
Offset: 0

Views

Author

Alois P. Heinz, Aug 06 2021

Keywords

Comments

Also number of factorizations of 2^n * Product_{i=1..4} prime(i+1).

Crossrefs

Column k=4 of A346426.
Cf. A346824.

A346858 Number of partitions of the (n+5)-multiset {0,...,0,1,2,...,5} with n 0's.

Original entry on oeis.org

52, 203, 566, 1315, 2752, 5317, 9722, 16972, 28582, 46677, 74304, 115643, 176551, 264909, 391463, 570530, 821244, 1168733, 1646113, 2296362, 3175362, 4354962, 5927481, 8010519, 10753793, 14346412, 19026984, 25094750, 32924339, 42982320, 55848839, 72241875
Offset: 0

Views

Author

Alois P. Heinz, Aug 06 2021

Keywords

Comments

Also number of factorizations of 2^n * Product_{i=1..5} prime(i+1).

Crossrefs

Column k=5 of A346426.
Cf. A346825.

A346859 Number of partitions of the (n+6)-multiset {0,...,0,1,2,...,6} with n 0's.

Original entry on oeis.org

203, 877, 2610, 6393, 13960, 28009, 52902, 95129, 164528, 275375, 448391, 712800, 1109913, 1696713, 2551726, 3781537, 5530232, 7990242, 11417770, 16150412, 22631546, 31438820, 43321938, 59247482, 80457475, 108538460, 145510420, 193932620, 257037132, 338888022
Offset: 0

Views

Author

Alois P. Heinz, Aug 06 2021

Keywords

Comments

Also number of factorizations of 2^n * Product_{i=1..6} prime(i+1).

Crossrefs

Column k=6 of A346426.
Cf. A346826.

A346860 Number of partitions of the (n+7)-multiset {0,...,0,1,2,...,7} with n 0's.

Original entry on oeis.org

877, 4140, 13082, 33645, 76464, 158926, 309546, 572402, 1015356, 1739545, 2894201, 4694575, 7449098, 11591659, 17728306, 26694963, 39636270, 58103409, 84185849, 120673575, 171271389, 240863809, 335857148, 464602342, 637935348, 869840604, 1178289511, 1586269108
Offset: 0

Views

Author

Alois P. Heinz, Aug 06 2021

Keywords

Comments

Also number of factorizations of 2^n * Product_{i=1..7} prime(i+1).

Crossrefs

Column k=7 of A346426.
Cf. A346827.
Previous Showing 11-20 of 23 results. Next