A350140
Nonsquarefree numbers whose prime signature has at least one odd part other the first or last.
Original entry on oeis.org
60, 84, 120, 132, 140, 150, 156, 168, 204, 220, 228, 240, 260, 264, 270, 276, 280, 294, 300, 308, 312, 315, 336, 340, 348, 364, 372, 378, 380, 408, 420, 440, 444, 456, 460, 476, 480, 490, 492, 495, 516, 520, 528, 532, 540, 552, 560, 564, 572, 580, 585, 588
Offset: 1
The terms together with their Heinz partitions begin (A-E = 10-14):
60: (3211) 276: (9211) 420: (43211)
84: (4211) 280: (43111) 440: (53111)
120: (32111) 294: (4421) 444: (C211)
132: (5211) 300: (33211) 456: (82111)
140: (4311) 308: (5411) 460: (9311)
150: (3321) 312: (62111) 476: (7411)
156: (6211) 315: (4322) 480: (3211111)
168: (42111) 336: (421111) 490: (4431)
204: (7211) 340: (7311) 492: (D211)
220: (5311) 348: (A211) 495: (5322)
228: (8211) 364: (6411) 516: (E211)
240: (321111) 372: (B211) 520: (63111)
260: (6311) 378: (42221) 528: (521111)
264: (52111) 380: (8311) 532: (8411)
270: (32221) 408: (72111) 540: (322211)
Including all nonsquarefree numbers gives
A013929, complement
A005117.
The strict instead of non-strict version is
A336568, counted by
A347548.
A version for compositions allowing strict is
A349057, counted by
A349053.
These partitions are counted by
A349796.
The complement in nonsquarefree partitions is
A350137, counted by
A349795.
A003242 = Carlitz (anti-run) compositions.
A096441 = weakly alternating 0-appended partitions.
A345164 = alternating permutations of prime indices, complement
A350251.
A345170 = partitions w/ an alternating permutation, ranked by
A345172.
A349056 = weakly alternating permutations of prime indices.
A349798 = weakly but not strongly alternating perms of prime indices.
Cf.
A000111,
A047967,
A333213,
A335448,
A344615,
A344653,
A345173,
A349054,
A349059,
A349797,
A349799.
-
Select[Range[300],!SquareFreeQ[#]&&PrimeNu[#]>1&& !And@@EvenQ/@Take[Last/@FactorInteger[#],{2,-2}]&]
A351009
Numbers k such that the k-th composition in standard order is a concatenation of distinct twins (x,x).
Original entry on oeis.org
0, 3, 10, 36, 43, 58, 136, 147, 228, 528, 547, 586, 676, 904, 2080, 2115, 2186, 2347, 2362, 2696, 2707, 2788, 3600, 3658, 3748, 8256, 8323, 8458, 8740, 8747, 8762, 9352, 10768, 10787, 11144, 14368, 14474, 14984, 32896, 33027, 33290, 33828, 33835, 33850, 34963
Offset: 1
The terms together with their binary expansions and standard compositions begin:
0: 0 ()
3: 11 (1,1)
10: 1010 (2,2)
36: 100100 (3,3)
43: 101011 (2,2,1,1)
58: 111010 (1,1,2,2)
136: 10001000 (4,4)
147: 10010011 (3,3,1,1)
228: 11100100 (1,1,3,3)
528: 1000010000 (5,5)
547: 1000100011 (4,4,1,1)
586: 1001001010 (3,3,2,2)
676: 1010100100 (2,2,3,3)
904: 1110001000 (1,1,4,4)
The case of twins (binary weight 2) is
A000120.
All terms are evil numbers
A001969.
The version for Heinz numbers of partitions is
A062503, counted by
A035457.
These compositions are counted by
A032020 interspersed with 0's.
Taking singles instead of twins gives
A349051.
A085207 represents concatenation using standard compositions.
Cf.
A003242,
A027383,
A035363,
A088218,
A106356,
A122134,
A238279,
A344604,
A349054,
A351005,
A351007.
Selected statistics of standard compositions:
- Number of distinct parts is
A334028.
Selected classes of standard compositions:
- Constant compositions are
A272919.
-
stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]], 1],0]]//Reverse;
Select[Range[0,1000], UnsameQ@@Split[stc[#]]&&And@@(#==2&)/@Length/@Split[stc[#]]&]
Comments