A350250
Numbers k such that the k-th composition in standard order is a non-alternating permutation of an initial interval of positive integers.
Original entry on oeis.org
37, 52, 549, 550, 556, 564, 581, 600, 616, 649, 657, 712, 786, 802, 836, 840, 16933, 16934, 16937, 16940, 16946, 16948, 16965, 16977, 16984, 16994, 17000, 17033, 17041, 17092, 17096, 17170, 17186, 17220, 17224, 17445, 17446, 17452, 17460, 17541, 17569, 17584
Offset: 1
The terms and corresponding permutations begin:
37: (3,2,1)
52: (1,2,3)
549: (4,3,2,1)
550: (4,3,1,2)
556: (4,2,1,3)
564: (4,1,2,3)
581: (3,4,2,1)
600: (3,2,1,4)
616: (3,1,2,4)
649: (2,4,3,1)
657: (2,3,4,1)
712: (2,1,3,4)
786: (1,4,3,2)
802: (1,3,4,2)
836: (1,2,4,3)
840: (1,2,3,4)
16933: (5,4,3,2,1)
This is the non-alternating case of
A333218.
This is the restriction of
A345168 to permutations, complement
A345167.
A345192 counts non-alternating compositions.
Statistics of standard compositions:
- Number of maximal anti-runs is
A333381.
- Number of distinct parts is
A334028.
Classes of standard compositions:
- Weakly decreasing compositions (partitions) are
A114994, strict
A333256.
- Weakly increasing compositions (multisets) are
A225620, strict
A333255.
- Constant compositions are
A272919.
Cf.
A008965,
A059893,
A164894,
A246534,
A333217,
A344605,
A345162,
A350251,
A345163,
A345171,
A345172,
A348613.
-
stc[n_]:=Differences[Prepend[Join@@Position[ Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
wigQ[y_]:=Or[Length[y]==0, Length[Split[y]]==Length[y] &&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
Select[Range[0,1000],(Sort[stc[#]]==Range[Length[stc[#]]]&&!wigQ[stc[#]])&]
A350353
Numbers whose multiset of prime factors has a permutation that is not weakly alternating.
Original entry on oeis.org
30, 36, 42, 60, 66, 70, 72, 78, 84, 90, 100, 102, 105, 108, 110, 114, 120, 126, 130, 132, 138, 140, 144, 150, 154, 156, 165, 168, 170, 174, 180, 182, 186, 190, 195, 196, 198, 200, 204, 210, 216, 220, 222, 225, 228, 230, 231, 234, 238, 240, 246, 252, 255, 258
Offset: 1
The terms together with a (generally not unique) non-weakly alternating permutation of each multiset of prime indices begin:
30 : (1,2,3) 100 : (1,3,3,1)
36 : (1,2,2,1) 102 : (1,2,7)
42 : (1,2,4) 105 : (2,3,4)
60 : (1,1,2,3) 108 : (1,2,2,1,2)
66 : (1,2,5) 110 : (1,3,5)
70 : (1,3,4) 114 : (1,2,8)
72 : (1,1,2,2,1) 120 : (1,1,1,2,3)
78 : (1,2,6) 126 : (1,2,4,2)
84 : (1,1,2,4) 130 : (1,3,6)
90 : (1,2,3,2) 132 : (1,1,2,5)
These are the positions of nonzero terms in
A349797.
Below, WA = "weakly alternating":
- WA ordered factorizations are counted by
A349059, complement
A350139.
A008480 counts permutations of prime factors.
A335452 counts anti-run permutations of prime factors, complement
A336107.
A345164 = alternating permutations of prime factors, complement
A350251.
Cf.
A003242,
A335433,
A335448,
A344652,
A344653,
A345171,
A345172,
A345173,
A348379,
A348613,
A349798,
A350252,
A349800.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
whkQ[y_]:=And@@Table[If[EvenQ[m],y[[m]]<=y[[m+1]],y[[m]]>=y[[m+1]]],{m,1,Length[y]-1}];
Select[Range[100],Select[Permutations[primeMS[#]],!whkQ[#]&&!whkQ[-#]&]!={}&]
Comments