cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A350250 Numbers k such that the k-th composition in standard order is a non-alternating permutation of an initial interval of positive integers.

Original entry on oeis.org

37, 52, 549, 550, 556, 564, 581, 600, 616, 649, 657, 712, 786, 802, 836, 840, 16933, 16934, 16937, 16940, 16946, 16948, 16965, 16977, 16984, 16994, 17000, 17033, 17041, 17092, 17096, 17170, 17186, 17220, 17224, 17445, 17446, 17452, 17460, 17541, 17569, 17584
Offset: 1

Views

Author

Gus Wiseman, Jan 13 2022

Keywords

Comments

A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The terms and corresponding permutations begin:
     37: (3,2,1)
     52: (1,2,3)
    549: (4,3,2,1)
    550: (4,3,1,2)
    556: (4,2,1,3)
    564: (4,1,2,3)
    581: (3,4,2,1)
    600: (3,2,1,4)
    616: (3,1,2,4)
    649: (2,4,3,1)
    657: (2,3,4,1)
    712: (2,1,3,4)
    786: (1,4,3,2)
    802: (1,3,4,2)
    836: (1,2,4,3)
    840: (1,2,3,4)
  16933: (5,4,3,2,1)
		

Crossrefs

This is the non-alternating case of A333218.
This is the restriction of A345168 to permutations, complement A345167.
These partitions are counted by A348615, complement A001250.
A003242 counts anti-run compositions, patterns A005649.
A025047 counts alternating compositions, directed A025048/A025049.
A345192 counts non-alternating compositions.
A345194 counts alternating patterns, complement A350252.
Statistics of standard compositions:
- Length is A000120.
- Sum is A070939.
- Heinz number is A333219.
- Number of maximal anti-runs is A333381.
- Number of distinct parts is A334028.
Classes of standard compositions:
- Weakly decreasing compositions (partitions) are A114994, strict A333256.
- Weakly increasing compositions (multisets) are A225620, strict A333255.
- Strict compositions are A233564.
- Constant compositions are A272919.
- Anti-run compositions are A333489, complement A348612.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[ Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    wigQ[y_]:=Or[Length[y]==0, Length[Split[y]]==Length[y] &&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    Select[Range[0,1000],(Sort[stc[#]]==Range[Length[stc[#]]]&&!wigQ[stc[#]])&]

A350353 Numbers whose multiset of prime factors has a permutation that is not weakly alternating.

Original entry on oeis.org

30, 36, 42, 60, 66, 70, 72, 78, 84, 90, 100, 102, 105, 108, 110, 114, 120, 126, 130, 132, 138, 140, 144, 150, 154, 156, 165, 168, 170, 174, 180, 182, 186, 190, 195, 196, 198, 200, 204, 210, 216, 220, 222, 225, 228, 230, 231, 234, 238, 240, 246, 252, 255, 258
Offset: 1

Views

Author

Gus Wiseman, Jan 13 2022

Keywords

Comments

We define a sequence to be weakly alternating if it is alternately weakly increasing and weakly decreasing, starting with either.

Examples

			The terms together with a (generally not unique) non-weakly alternating permutation of each multiset of prime indices begin:
   30 : (1,2,3)       100 : (1,3,3,1)
   36 : (1,2,2,1)     102 : (1,2,7)
   42 : (1,2,4)       105 : (2,3,4)
   60 : (1,1,2,3)     108 : (1,2,2,1,2)
   66 : (1,2,5)       110 : (1,3,5)
   70 : (1,3,4)       114 : (1,2,8)
   72 : (1,1,2,2,1)   120 : (1,1,1,2,3)
   78 : (1,2,6)       126 : (1,2,4,2)
   84 : (1,1,2,4)     130 : (1,3,6)
   90 : (1,2,3,2)     132 : (1,1,2,5)
		

Crossrefs

The strong version is A289553, complement A167171.
These are the positions of nonzero terms in A349797.
Below, WA = "weakly alternating":
- WA compositions are counted by A349052/A129852/A129853.
- Non-WA compositions are counted by A349053, ranked by A349057.
- WA permutations of prime factors = A349056, complement A349797.
- WA patterns are counted by A349058, complement A350138.
- WA ordered factorizations are counted by A349059, complement A350139.
- WA partitions are counted by A349060, complement A349061.
A001250 counts alternating permutations, complement A348615.
A008480 counts permutations of prime factors.
A025047 = alternating compositions, ranked by A345167, complement A345192.
A056239 adds up prime indices, row sums of A112798 (row lengths A001222).
A071321 gives the alternating sum of prime factors, reverse A071322.
A335452 counts anti-run permutations of prime factors, complement A336107.
A345164 = alternating permutations of prime factors, complement A350251.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    whkQ[y_]:=And@@Table[If[EvenQ[m],y[[m]]<=y[[m+1]],y[[m]]>=y[[m+1]]],{m,1,Length[y]-1}];
    Select[Range[100],Select[Permutations[primeMS[#]],!whkQ[#]&&!whkQ[-#]&]!={}&]
Previous Showing 11-12 of 12 results.