A357404
Coefficients in the power series A(x) such that: 4 = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n)^(n+1) * A(x)^n.
Original entry on oeis.org
1, 4, 32, 324, 3632, 43640, 549472, 7154952, 95563392, 1301943972, 18022506736, 252768034908, 3584103003152, 51294399688504, 739984677348512, 10749373940462452, 157101410692820448, 2308378616597302488, 34080671255517914992, 505321131709023383016, 7521442675843527317728
Offset: 0
G.f.: A(x) = 1 + 4*x + 32*x^2 + 324*x^3 + 3632*x^4 + 43640*x^5 + 549472*x^6 + 7154952*x^7 + 95563392*x^8 + 1301943972*x^9 + 18022506736*x^10 + ...
such that
4 = ... + x^(-3)*(1 - x^(-2))^(-1)/A(x)^2 + x^(-1)/A(x) + x*0 + x^3*(1 - x)^2*A(x) + x^5*(1 - x^2)^3*A(x)^2 + x^7*(1 - x^3)^4*A(x)^3 + ... + x^(2*n+1)*(1 - x^n)^(n+1)*A(x)^n + ...
also
-4*A(x)^3 = ... + x^(-3)*(A(x) - x^(-2))^(-1)*A(x)^2 + x^(-1)*A(x) + x*(A(x) - 1) + x^3*(A(x) - x)^2/A(x) + x^5*(1 - x^2)^3/A(x)^2 + x^7*(A(x) - x^3)^4/A(x)^3 + ... + x^(2*n+1)*(A(x) - x^n)^(n+1)/A(x)^n + ...
-
{a(n) = my(A=[1]); for(i=0, n, A = concat(A, 0);
A[#A] = polcoeff(4 - sum(m=-#A\2-1, #A\2+1, x^(2*m+1) * (1 - x^m +x*O(x^#A))^(m+1) * Ser(A)^m ), #A-2); ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
A357405
Coefficients in the power series A(x) such that: 5 = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n)^(n+1) * A(x)^n.
Original entry on oeis.org
1, 5, 50, 630, 8825, 132490, 2084115, 33903705, 565697930, 9627904690, 166493454330, 2917050253615, 51670197054515, 923774673549045, 16647699155752645, 302098954307654995, 5515438344643031325, 101237254225602624790, 1867129260849076888865, 34583287418814030368150
Offset: 0
G.f.: A(x) = 1 + 5*x + 50*x^2 + 630*x^3 + 8825*x^4 + 132490*x^5 + 2084115*x^6 + 33903705*x^7 + 565697930*x^8 + 9627904690*x^9 + 166493454330*x^10 + ...
such that
5 = ... + x^(-3)*(1 - x^(-2))^(-1)/A(x)^2 + x^(-1)/A(x) + x*0 + x^3*(1 - x)^2*A(x) + x^5*(1 - x^2)^3*A(x)^2 + x^7*(1 - x^3)^4*A(x)^3 + ... + x^(2*n+1)*(1 - x^n)^(n+1)*A(x)^n + ...
also
-5*A(x)^3 = ... + x^(-3)*(A(x) - x^(-2))^(-1)*A(x)^2 + x^(-1)*A(x) + x*(A(x) - 1) + x^3*(A(x) - x)^2/A(x) + x^5*(1 - x^2)^3/A(x)^2 + x^7*(A(x) - x^3)^4/A(x)^3 + ... + x^(2*n+1)*(A(x) - x^n)^(n+1)/A(x)^n + ...
-
{a(n) = my(A=[1]); for(i=0, n, A = concat(A, 0);
A[#A] = polcoeff(5 - sum(m=-#A\2-1, #A\2+1, x^(2*m+1) * (1 - x^m +x*O(x^#A))^(m+1) * Ser(A)^m ), #A-2); ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
A380557
G.f. satisfies A(x) such that: -1 = Sum_{n=-oo..+oo} (-1)^n * x^(2*n+1) * (1 + x^n)^(n+1) * A(x)^n.
Original entry on oeis.org
1, 1, 2, 10, 35, 146, 589, 2521, 10880, 48130, 215490, 978131, 4483493, 20740309, 96667511, 453596099, 2140879339, 10157274086, 48414142443, 231726319442, 1113290775079, 5366873616498, 25952658569610, 125856499026093, 611930422986515, 2982444057333882, 14568259180879990, 71307949455547118
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 10*x^3 + 35*x^4 + 146*x^5 + 589*x^6 + 2521*x^7 + 10880*x^8 + 48130*x^9 + 215490*x^10 + ...
SPECIFIC VALUES.
A(t) = 15/8 at t = 0.19344501240894726710748422307503613491843235983978...
where -1 = Sum_{n=-oo..+oo} (-1)^n * t^(2*n+1) * (1 + t^n)^(n+1) * (15/8)^n.
A(t) = 13/7 at t = 0.19341948378562934846535490742010025888491204467175...
A(t) = 11/6 at t = 0.19333502076470314454576717568898264806286912451280...
A(t) = 9/5 at t = 0.193110973645115287451084966528093291445869685605026...
A(t) = 7/4 at t = 0.192511645242345015361112270688385360547743653185979...
A(t) = 5/3 at t = 0.190649553303712199475798636706794101316873079578727...
A(t) = 3/2 at t = 0.182089586086018008207410926078691444238166561231377...
A(t) = 4/3 at t = 0.161675866655112310035152981730415472582224089685922...
A(t) = 5/4 at t = 0.143001255997678107192529149738503806026990657450325...
A(t) = 6/5 at t = 0.127286533527611786785145642678412658294861536180040...
A(t) = 7/6 at t = 0.114247661034580905508079370420172649525885310579285...
A(1/6) = 1.3631240552377275579566206545056633589020532732074...
where -1 = Sum_{n=-oo..+oo} (-1)^n * (1/6)^(2*n+1) * (1 + (1/6)^n)^(n+1) * A(1/6)^n.
A(1/7) = 1.2494768685846922246570903862376666502561254090745...
A(1/8) = 1.1937090558071312140144246419584402049019509862828...
A(1/9) = 1.1594652229281839152092617957390758203214375656645...
A(1/10) = 1.135997746902180909378823046338236460433675615420...
-
{a(n) = my(A=[1]); for(i=0, n, A = concat(A, 0);
A[#A] = polcoeff(1 + sum(m=-#A, #A, (-1)^m * x^(2*m+1) * (1 + x^m +x*O(x^#A))^(m+1) * Ser(A)^m ), #A-2); ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
A382322
G.f. A(x) satisfies -2 = Sum_{n=-oo..+oo} (-1)^n * x^(2*n+1) * (1 + x^n)^(n+1) * A(x)^n.
Original entry on oeis.org
1, 2, 8, 50, 308, 2044, 14072, 100172, 730328, 5428498, 40978780, 313322910, 2421454020, 18884988540, 148443853936, 1174814738082, 9353539487160, 74865615299260, 602057472027484, 4862177553583604, 39416710563473400, 320650120976612168, 2616673301770051376, 21414973020645504142
Offset: 0
G.f.: A(x) = 1 + 2*x + 8*x^2 + 50*x^3 + 308*x^4 + 2044*x^5 + 14072*x^6 + 100172*x^7 + 730328*x^8 + 5428498*x^9 + 40978780*x^10 + ...
-
{a(n) = my(A=[1]); for(i=0, n, A = concat(A, 0);
A[#A] = polcoef(2 + sum(m=-#A, #A, (-1)^m * x^(2*m+1) * (1 + x^m +x*O(x^#A))^(m+1) * Ser(A)^m ), #A-2); ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
A382323
G.f. A(x) satisfies -3 = Sum_{n=-oo..+oo} (-1)^n * x^(2*n+1) * (1 + x^n)^(n+1) * A(x)^n.
Original entry on oeis.org
1, 3, 18, 150, 1323, 12486, 123069, 1253595, 13089576, 139367370, 1507353966, 16515098985, 182913374493, 2044565139303, 23035036108755, 261312501113193, 2982280058702499, 34217698991867058, 394470188685557271, 4566935001939261414, 53076293916648500439, 618991948535588040078
Offset: 0
G.f.: A(x) = 1 + 3*x + 18*x^2 + 150*x^3 + 1323*x^4 + 12486*x^5 + 123069*x^6 + 1253595*x^7 + 13089576*x^8 + 139367370*x^9 + ...
-
{a(n) = my(A=[1]); for(i=0, n, A = concat(A, 0);
A[#A] = polcoef(3 + sum(m=-#A, #A, (-1)^m * x^(2*m+1) * (1 + x^m +x*O(x^#A))^(m+1) * Ser(A)^m ), #A-2); ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
Comments