A357705 Triangle read by rows where T(n,k) is the number of reversed integer partitions of n with skew-alternating sum k, where k ranges from -n to n in steps of 2.
1, 0, 1, 0, 1, 1, 0, 2, 0, 1, 0, 2, 2, 0, 1, 0, 3, 1, 2, 0, 1, 0, 3, 2, 3, 2, 0, 1, 0, 4, 2, 4, 1, 3, 0, 1, 0, 4, 3, 3, 6, 2, 3, 0, 1, 0, 5, 3, 5, 3, 7, 2, 4, 0, 1, 0, 5, 4, 5, 4, 9, 7, 3, 4, 0, 1, 0, 6, 4, 7, 3, 12, 5, 10, 3, 5, 0, 1
Offset: 0
Examples
Triangle begins: 1 0 1 0 1 1 0 2 0 1 0 2 2 0 1 0 3 1 2 0 1 0 3 2 3 2 0 1 0 4 2 4 1 3 0 1 0 4 3 3 6 2 3 0 1 0 5 3 5 3 7 2 4 0 1 0 5 4 5 4 9 7 3 4 0 1 0 6 4 7 3 12 5 10 3 5 0 1 0 6 5 7 5 10 16 7 11 4 5 0 1 0 7 5 9 5 14 11 18 7 14 4 6 0 1 Row n = 7 counts the following reversed partitions: . (16) (25) (34) (1123) (1114) . (7) (115) (223) (1222) (11113) (124) (111112) (11122) (133) (1111111)
Crossrefs
Programs
-
Mathematica
skats[f_]:=Sum[f[[i]]*(-1)^(1+Ceiling[(i+1)/2]),{i,Length[f]}]; Table[Length[Select[Reverse/@IntegerPartitions[n],skats[#]==k&]],{n,0,11},{k,-n,n,2}]
Comments