cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A360164 a(n) is the sum of the square roots of the unitary divisors of n that are odd squares.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 8, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 6, 1, 1, 1, 1, 1, 10, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Jan 29 2023

Keywords

Comments

First differs from A336649 at n = 27.
The unitary analog of A360163.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], 1, p^(e/2) + 1]; f[2, e_] := 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 1] == 2, 1, if(f[i, 2]%2, 1, f[i, 1]^(f[i, 2]/2) + 1))); }

Formula

a(n) = Sum_{d|n, gcd(d, n/d)=1, d odd square} sqrt(d).
a(n) = A360162(n) if n is not of the form (2*m - 1)*4^k where m >= 1, k >= 1 (A108269).
Multiplicative with a(2^e) = 1, and for p > 2, a(p^e) = p^(e/2) + 1 if e is even and 1 if e is odd.
Dirichlet g.f.: (zeta(s)*zeta(2*s-1)/zeta(3*s-1))*(2^(3*s)-2^(s+1))/(2^(3*s)-2).
Sum_{k=1..n} a(k) ~ (2*n/Pi^2)*(log(n) + 3*gamma - 1 + log(2) - 3*zeta'(2)/zeta(2)), where gamma is Euler's constant (A001620).

A380400 The sum of unitary divisors of n that are perfect powers (A001597).

Original entry on oeis.org

1, 1, 1, 5, 1, 1, 1, 9, 10, 1, 1, 5, 1, 1, 1, 17, 1, 10, 1, 5, 1, 1, 1, 9, 26, 1, 28, 5, 1, 1, 1, 33, 1, 1, 1, 50, 1, 1, 1, 9, 1, 1, 1, 5, 10, 1, 1, 17, 50, 26, 1, 5, 1, 28, 1, 9, 1, 1, 1, 5, 1, 1, 10, 65, 1, 1, 1, 5, 1, 1, 1, 18, 1, 1, 26, 5, 1, 1, 1, 17, 82
Offset: 1

Views

Author

Amiram Eldar, Jan 23 2025

Keywords

Comments

First differs from A360720 at n = 72.
The number of unitary divisors of n that are perfect powers is A380398(n).

Examples

			a(4) = 5 since 4 have 2 unitary divisors that are perfect powers, 1 and 4 = 2^2, and 1 + 4 = 5.
a(72) = 18 since 72 have 3 unitary divisors that are perfect powers, 1, 8 = 2^3, and 9 = 3^2, and 1 + 8 + 9 = 18.
		

Crossrefs

Programs

  • Mathematica
    ppQ[n_] := n == 1 || GCD @@ FactorInteger[n][[;; , 2]] > 1; a[n_] := DivisorSum[n, # &, CoprimeQ[#, n/#] && ppQ[#] &]; Array[a, 100]
  • PARI
    a(n) = sumdiv(n, d, d * (gcd(d, n/d) == 1 && (d == 1 || ispower(d))));

Formula

a(n) = Sum_{d|n, gcd(d, n/d) == 1} d * [d in A001597], where [] is the Iverson bracket.
a(n) <= A360720(n).
a(n) = 1 if and only if n is squarefree (A005117).

A360161 a(n) is the sum of unitary divisors of n that are odd squares minus the sum of unitary divisors of n that are even squares.

Original entry on oeis.org

1, 1, 1, -3, 1, 1, 1, 1, 10, 1, 1, -3, 1, 1, 1, -15, 1, 10, 1, -3, 1, 1, 1, 1, 26, 1, 1, -3, 1, 1, 1, 1, 1, 1, 1, -30, 1, 1, 1, 1, 1, 1, 1, -3, 10, 1, 1, -15, 50, 26, 1, -3, 1, 1, 1, 1, 1, 1, 1, -3, 1, 1, 10, -63, 1, 1, 1, -3, 1, 1, 1, 10, 1, 1, 26, -3, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Jan 29 2023

Keywords

Comments

The unitary analog of A344300.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], 1, p^e + 1]; f[2, e_] := If[OddQ[e], 1, 1 - 2^e]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 1] == 2, if(f[i, 2]%2, 1, 1 - 2^f[i, 2]), if(f[i, 2]%2, 1, f[i, 1]^f[i, 2] + 1))); }

Formula

a(n) = Sum_{d|n, gcd(d, n/d)=1, d square} (-1)^(d+1) * d.
a(n) = A360160(n) - 2 * A358347(n).
Multiplicative with a(2^e) = 1 - 2^e if e is even and 1 if e is odd, and for p > 2, a(p^e) = p^e + 1 if e is even and 1 if e is odd.
Dirichlet g.f.: (zeta(s)*zeta(2*s-2)/zeta(3*s-2))*(2^(3*s)-2^(s+3)+4)/(2^(3*s)-4).
Sum_{k=1..n} a(k) ~ c * n^(3/2), where c = zeta(3/2)/(3*zeta(5/2)*(4*sqrt(2)-1)) = 0.1393911255... .
Previous Showing 11-13 of 13 results.