cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 24 results. Next

A358949 Number of vertices formed inside a triangle with edge length 1 by the straight line segments mutually connecting all vertices and points that divide the sides into segments with lengths equal to the Farey series of order n = A006842(n,k)/A006843(n,k), k = 1..A005728(n).

Original entry on oeis.org

3, 10, 148, 1111, 9568, 23770, 126187, 308401, 855145, 1521733, 4591405, 6831040
Offset: 1

Views

Author

Keywords

Comments

The number of points along each edge is given by A005728(n).

Crossrefs

Cf. A358948 (regions), A358950 (edges), A358951 (k-gons), A358887, A006842, A006843, A005728, A358882.

Formula

a(n) = A358950(n) - A358948(n) + 1 by Euler's formula.

A358951 Irregular table read by rows: T(n,k) = number of k-gons, k >= 3, formed inside a triangle with edge length 1 by the straight line segments mutually connecting all vertices and points that divide the sides into segments with lengths equal to the Farey series of order n = A006842(n,m)/A006843(n,m), m = 1..A005728(n).

Original entry on oeis.org

1, 12, 180, 42, 6, 810, 576, 72, 6, 6786, 4932, 744, 48, 6, 13662, 12522, 2568, 258, 12, 72582, 64932, 14376, 1632, 36, 6, 164484, 155088, 38688, 5958, 414, 18, 439524, 422370, 114804, 18462, 1392, 120, 750108, 749928, 211518, 35226, 3336, 204, 6, 2265462, 2240994, 647184, 109602, 10230, 666, 18
Offset: 1

Views

Author

Keywords

Comments

The number of points along each edge is given by A005728(n).

Examples

			The table begins:
1;
12;
180, 42, 6;
810, 576, 72, 6;
6786, 4932, 744, 48, 6;
13662, 12522, 2568, 258, 12;
72582, 64932, 14376, 1632, 36, 6;
164484, 155088, 38688, 5958, 414, 18;
439524, 422370, 114804, 18462, 1392, 120;
750108, 749928, 211518, 35226, 3336, 204, 6;
2265462, 2240994, 647184, 109602, 10230, 666, 18;
3263436, 3312270, 990072, 176172, 18294, 1188, 66;
.
.
		

Crossrefs

Cf. A358948 (regions), A358949 (vertices), A358950 (edges), A358889, A006842, A006843, A005728, A358882.

Formula

Sum of row n = A358948(n).

A358884 The number of edges in a Farey diagram of order (n,n).

Original entry on oeis.org

8, 92, 816, 3276, 13040, 29452, 82128, 160656, 328212, 556040, 1065660, 1592368, 2768168, 4026972, 6083804, 8572272, 13075848, 17078512, 24932940, 32266036
Offset: 1

Views

Author

Keywords

Comments

See the linked references for further details.
The first diagram where not all edge points are connected is n = 3. For example a line connecting points (0,1/3) and (1/3,0) has equation 3*y - 6*x - 1 = 0, and as one of the x or y coefficients is greater than n (3 in this case) the line is not included.

Crossrefs

Cf. A358882 (regions), A358883 (vertices), A358885 (k-gons), A006842, A006843, A005728, A358888.
See A358298 for definition of Farey diagram Farey(m,n).
The Farey Diagrams Farey(m,n) are studied in A358298-A358307 and A358882-A358885, the Completed Farey Diagrams of order (m,n) in A358886-A358889.

Formula

a(n) = A358882(n) + A358883(n) - 1 by Euler's formula.

A358950 Number of edges formed inside a triangle with edge length 1 by the straight line segments mutually connecting all vertices and points that divide the sides into segments with lengths equal to the Farey series of order n = A006842(n,k)/A006843(n,k), k = 1..A005728(n).

Original entry on oeis.org

3, 21, 375, 2574, 22083, 52791, 279750, 673050, 1851816, 3272058, 9865560, 14592537
Offset: 1

Views

Author

Keywords

Comments

The number of points along each edge is given by A005728(n).
See A358948 and A358949 for images of the square.

Crossrefs

Cf. A358948 (regions), A358949 (vertices), A358951 (k-gons), A358888, A006842, A006843, A005728, A358882.

Formula

a(n) = A358948(n) + A358949(n) - 1 by Euler's formula.

A359653 Number of regions formed in a square with edge length 1 by straight line segments when connecting the internal edge points that divide the sides into segments with lengths equal to the Farey series of order n to the equivalent points on the opposite side of the square.

Original entry on oeis.org

1, 4, 96, 728, 7840, 17744, 104136, 246108, 681704, 1187200, 3719496, 5396692, 14149896
Offset: 1

Views

Author

Keywords

Comments

The number of points internal to each edge is given by A005728(n) - 2.

Crossrefs

Cf. A359654 (vertices), A359655 (edges), A359656 (k-gons), A005728, A358886, A358882, A355798, A358948, A006842, A006843.

Formula

a(n) = A359655(n) - A359654(n) + 1 by Euler's formula.

A359692 Number of regions in a regular drawing of a complete bipartite graph where the vertex positions on each part equal the Farey series of order n.

Original entry on oeis.org

2, 12, 94, 382, 2486, 4946, 24100, 53152, 138158, 233254, 700720, 999364, 2559344, 3785044, 6027148, 9210820
Offset: 1

Views

Author

Keywords

Comments

The number of vertices along each edge is A005728(n). No formula for a(n) is known.

Crossrefs

Cf. A359690 (vertices), A359691 (crossings), A359693 (edges), A359694 (k-gons), A005728, A290131, A359653, A358886, A358882, A006842, A006843.

Formula

a(n) = A359693(n) - A359690(n) + 1 by Euler's formula.

A358304 Array read by antidiagonals: T(n,k) (n>=0, k>=0) = number of decreasing lines defining the Farey diagram Farey(n,k) of order (n,k).

Original entry on oeis.org

0, 0, 0, 0, 2, 0, 0, 5, 5, 0, 0, 9, 10, 9, 0, 0, 14, 19, 19, 14, 0, 0, 20, 27, 32, 27, 20, 0, 0, 27, 40, 47, 47, 40, 27, 0, 0, 35, 51, 68, 66, 68, 51, 35, 0, 0, 44, 68, 85, 96, 96, 85, 68, 44, 0, 0, 54, 82, 112, 118, 134, 118, 112, 82, 54, 0, 0, 65, 103, 137, 156, 167, 167, 156, 137, 103, 65, 0, 0, 77, 120, 166, 187, 217, 204, 217, 187, 166, 120, 77, 0
Offset: 0

Views

Author

Keywords

Examples

			The full array T(n,k), n >= 0, k >= 0, begins:
  0,  0,  0,  0,   0,   0,   0,   0,   0,   0,   0,   0,   0, ..
  0,  2,  5,  9,  14,  20,  27,  35,  44,  54,  65,  77,  90, ..
  0,  5, 10, 19,  27,  40,  51,  68,  82, 103, 120, 145, 165, ..
  0,  9, 19, 32,  47,  68,  85, 112, 137, 166, 196, 235, 265, ..
  0, 14, 27, 47,  66,  96, 118, 156, 187, 229, 266, 320, 358, ..
  0, 20, 40, 68,  96, 134, 167, 217, 261, 317, 366, 436, 491, ..
  0, 27, 51, 85, 118, 167, 204, 267, 318, 384, 441, 528, 589, ..
  ...
		

Crossrefs

Cf. A358298.
The Farey Diagrams Farey(m,n) are studied in A358298-A358307 and A358882-A358885, the Completed Farey Diagrams of order (m,n) in A358886-A358889.

Programs

  • Maple
    A005728 := proc(n) 1+add(numtheory[phi](i), i=1..n) ; end proc: # called F_n in the paper
    Amn:=proc(m,n) local a,i,j;  # A331781 or equally A333295. Diagonal is A018805.
    a:=0; for i from 1 to m do for j from 1 to n do
    if igcd(i,j)=1 then a:=a+1; fi; od: od: a; end;
    DFD:=proc(m,n) local d,t1,u,v; global A005728, Amn;
    t1:=0; for u from 1 to m do for v from 1 to n do
    d:=igcd(u,v); if d>=1 then t1:=t1 + (u+v)*numtheory[phi](d)/d; fi; od: od:
    t1; end;
    for m from 0 to 8 do lprint([seq(DFD(m,n),n=0..20)]); od:
  • Mathematica
    T[n_, k_] := Sum[d = GCD[u, v]; If[d >= 1, (u+v)*EulerPhi[d]/d, 0], {u, 1, n}, {v, 1, k}];
    Table[T[n-k, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 18 2023 *)

A358299 Triangle read by antidiagonals: T(n,k) (n>=0, 0 <= k <= n) = number of lines defining the Farey diagram of order (n,k).

Original entry on oeis.org

2, 3, 6, 4, 11, 20, 6, 19, 36, 60, 8, 29, 52, 88, 124, 12, 43, 78, 128, 180, 252, 14, 57, 100, 162, 224, 316, 388, 20, 77, 136, 216, 298, 412, 508, 652, 24, 97, 166, 266, 360, 498, 608, 780, 924, 30, 121, 210, 326, 444, 608, 738, 940, 1116, 1332, 34, 145, 246, 386, 518, 706, 852, 1086, 1280, 1532, 1748
Offset: 0

Views

Author

Keywords

Examples

			The full array T(n,k), n >= 0, k>= 0, begins:
2, 3, 4, 6, 8, 12, 14, 20, 24, 30, 34, 44, 48, 60, ...
3, 6, 11, 19, 29, 43, 57, 77, 97, 121, 145, 177, 205, ...
4, 11, 20, 36, 52, 78, 100, 136, 166, 210, 246, 302, ...
6, 19, 36, 60, 88, 128, 162, 216, 266, 326, 386, 468, ...
8, 29, 52, 88, 124, 180, 224, 298, 360, 444, 518, 628, ...
12, 43, 78, 128, 180, 252, 316, 412, 498, 608, 706, ...
14, 57, 100, 162, 224, 316, 388, 508, 608, 738, 852, ...
...
		

Crossrefs

The Farey Diagrams Farey(m,n) are studied in A358298-A358307 and A358882-A358885, the Completed Farey Diagrams of order (m,n) in A358886-A358889.

Programs

  • Maple
    A005728 := proc(n) 1+add(numtheory[phi](i), i=1..n) ; end proc: # called F_n in the paper
    Amn:=proc(m,n) local a,i,j; # A331781 or equally A333295. Diagonal is A018805.
    a:=0; for i from 1 to m do for j from 1 to n do
    if igcd(i,j)=1 then a:=a+1; fi; od: od: a; end;
    # The present sequence is:
    Dmn:=proc(m,n) local d,t1,u,v,a; global A005728, Amn;
    a:=A005728(m)+A005728(n);
    t1:=0; for u from 1 to m do for v from 1 to n do
    d:=igcd(u,v); if d>=1 then t1:=t1 + (u+v)*numtheory[phi](d)/d; fi; od: od:
    a+2*t1-2*Amn(m,n); end;
    for m from 1 to 8 do lprint([seq(Dmn(m,n),n=1..20)]); od:

A358300 Row 1 of array in A358298.

Original entry on oeis.org

3, 6, 11, 19, 29, 43, 57, 77, 97, 121, 145, 177, 205, 243, 277, 315, 355, 405, 447, 503, 551, 605, 659, 727, 783, 853, 917, 989, 1057, 1143, 1211, 1303, 1383, 1469, 1553, 1647, 1731, 1841, 1935, 2037, 2133, 2255, 2351, 2479, 2587, 2701, 2815, 2955, 3067, 3207, 3327, 3461
Offset: 0

Views

Author

Keywords

Crossrefs

The Farey Diagrams Farey(m,n) are studied in A358298-A358307 and A358882-A358885, the Completed Farey Diagrams of order (m,n) in A358886-A358889.

A358301 Main diagonal of array in A358298.

Original entry on oeis.org

2, 6, 20, 60, 124, 252, 388, 652, 924, 1332, 1748, 2428, 2988, 3948, 4788, 5908, 7028, 8692, 9964, 12052, 13748, 16004, 18124, 21204, 23476, 26996, 29972, 33788, 37196, 42124, 45548, 51188, 55732, 61412, 66532, 73348, 78484, 86548, 92956, 100924, 107772, 117692, 124556, 135476, 144036
Offset: 0

Views

Author

Keywords

Crossrefs

The Farey Diagrams Farey(m,n) are studied in A358298-A358307 and A358882-A358885, the Completed Farey Diagrams of order (m,n) in A358886-A358889.

Programs

  • Mathematica
    A005728[n_] := 1 + Sum[EulerPhi[i], {i, 1, n}];
    Amn[m_, n_] := Sum[If[GCD[i, j] == 1, 1, 0], {i, 1, m}, {j, 1, n}];
    Dmn[m_, n_] := A005728[m] + A005728[n] + 2 Sum[d = GCD[u, v]; If[d >= 1, (u+v)*EulerPhi[d]/d, 0], {u, 1, m}, {v, 1, n}] - 2*Amn[m, n];
    Table[Dmn[n, n], {n, 0, 44}] (* Jean-François Alcover, Apr 18 2023, after Maple code in A358298 *)
Previous Showing 11-20 of 24 results. Next