A358304
Array read by antidiagonals: T(n,k) (n>=0, k>=0) = number of decreasing lines defining the Farey diagram Farey(n,k) of order (n,k).
Original entry on oeis.org
0, 0, 0, 0, 2, 0, 0, 5, 5, 0, 0, 9, 10, 9, 0, 0, 14, 19, 19, 14, 0, 0, 20, 27, 32, 27, 20, 0, 0, 27, 40, 47, 47, 40, 27, 0, 0, 35, 51, 68, 66, 68, 51, 35, 0, 0, 44, 68, 85, 96, 96, 85, 68, 44, 0, 0, 54, 82, 112, 118, 134, 118, 112, 82, 54, 0, 0, 65, 103, 137, 156, 167, 167, 156, 137, 103, 65, 0, 0, 77, 120, 166, 187, 217, 204, 217, 187, 166, 120, 77, 0
Offset: 0
The full array T(n,k), n >= 0, k >= 0, begins:
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ..
0, 2, 5, 9, 14, 20, 27, 35, 44, 54, 65, 77, 90, ..
0, 5, 10, 19, 27, 40, 51, 68, 82, 103, 120, 145, 165, ..
0, 9, 19, 32, 47, 68, 85, 112, 137, 166, 196, 235, 265, ..
0, 14, 27, 47, 66, 96, 118, 156, 187, 229, 266, 320, 358, ..
0, 20, 40, 68, 96, 134, 167, 217, 261, 317, 366, 436, 491, ..
0, 27, 51, 85, 118, 167, 204, 267, 318, 384, 441, 528, 589, ..
...
-
A005728 := proc(n) 1+add(numtheory[phi](i), i=1..n) ; end proc: # called F_n in the paper
Amn:=proc(m,n) local a,i,j; # A331781 or equally A333295. Diagonal is A018805.
a:=0; for i from 1 to m do for j from 1 to n do
if igcd(i,j)=1 then a:=a+1; fi; od: od: a; end;
DFD:=proc(m,n) local d,t1,u,v; global A005728, Amn;
t1:=0; for u from 1 to m do for v from 1 to n do
d:=igcd(u,v); if d>=1 then t1:=t1 + (u+v)*numtheory[phi](d)/d; fi; od: od:
t1; end;
for m from 0 to 8 do lprint([seq(DFD(m,n),n=0..20)]); od:
-
T[n_, k_] := Sum[d = GCD[u, v]; If[d >= 1, (u+v)*EulerPhi[d]/d, 0], {u, 1, n}, {v, 1, k}];
Table[T[n-k, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 18 2023 *)
A358299
Triangle read by antidiagonals: T(n,k) (n>=0, 0 <= k <= n) = number of lines defining the Farey diagram of order (n,k).
Original entry on oeis.org
2, 3, 6, 4, 11, 20, 6, 19, 36, 60, 8, 29, 52, 88, 124, 12, 43, 78, 128, 180, 252, 14, 57, 100, 162, 224, 316, 388, 20, 77, 136, 216, 298, 412, 508, 652, 24, 97, 166, 266, 360, 498, 608, 780, 924, 30, 121, 210, 326, 444, 608, 738, 940, 1116, 1332, 34, 145, 246, 386, 518, 706, 852, 1086, 1280, 1532, 1748
Offset: 0
The full array T(n,k), n >= 0, k>= 0, begins:
2, 3, 4, 6, 8, 12, 14, 20, 24, 30, 34, 44, 48, 60, ...
3, 6, 11, 19, 29, 43, 57, 77, 97, 121, 145, 177, 205, ...
4, 11, 20, 36, 52, 78, 100, 136, 166, 210, 246, 302, ...
6, 19, 36, 60, 88, 128, 162, 216, 266, 326, 386, 468, ...
8, 29, 52, 88, 124, 180, 224, 298, 360, 444, 518, 628, ...
12, 43, 78, 128, 180, 252, 316, 412, 498, 608, 706, ...
14, 57, 100, 162, 224, 316, 388, 508, 608, 738, 852, ...
...
-
A005728 := proc(n) 1+add(numtheory[phi](i), i=1..n) ; end proc: # called F_n in the paper
Amn:=proc(m,n) local a,i,j; # A331781 or equally A333295. Diagonal is A018805.
a:=0; for i from 1 to m do for j from 1 to n do
if igcd(i,j)=1 then a:=a+1; fi; od: od: a; end;
# The present sequence is:
Dmn:=proc(m,n) local d,t1,u,v,a; global A005728, Amn;
a:=A005728(m)+A005728(n);
t1:=0; for u from 1 to m do for v from 1 to n do
d:=igcd(u,v); if d>=1 then t1:=t1 + (u+v)*numtheory[phi](d)/d; fi; od: od:
a+2*t1-2*Amn(m,n); end;
for m from 1 to 8 do lprint([seq(Dmn(m,n),n=1..20)]); od:
Original entry on oeis.org
3, 6, 11, 19, 29, 43, 57, 77, 97, 121, 145, 177, 205, 243, 277, 315, 355, 405, 447, 503, 551, 605, 659, 727, 783, 853, 917, 989, 1057, 1143, 1211, 1303, 1383, 1469, 1553, 1647, 1731, 1841, 1935, 2037, 2133, 2255, 2351, 2479, 2587, 2701, 2815, 2955, 3067, 3207, 3327, 3461
Offset: 0
Original entry on oeis.org
2, 6, 20, 60, 124, 252, 388, 652, 924, 1332, 1748, 2428, 2988, 3948, 4788, 5908, 7028, 8692, 9964, 12052, 13748, 16004, 18124, 21204, 23476, 26996, 29972, 33788, 37196, 42124, 45548, 51188, 55732, 61412, 66532, 73348, 78484, 86548, 92956, 100924, 107772, 117692, 124556, 135476, 144036
Offset: 0
-
A005728[n_] := 1 + Sum[EulerPhi[i], {i, 1, n}];
Amn[m_, n_] := Sum[If[GCD[i, j] == 1, 1, 0], {i, 1, m}, {j, 1, n}];
Dmn[m_, n_] := A005728[m] + A005728[n] + 2 Sum[d = GCD[u, v]; If[d >= 1, (u+v)*EulerPhi[d]/d, 0], {u, 1, m}, {v, 1, n}] - 2*Amn[m, n];
Table[Dmn[n, n], {n, 0, 44}] (* Jean-François Alcover, Apr 18 2023, after Maple code in A358298 *)
A358302
Number of triangular regions in the Farey Diagram Farey(n,n), divided by 4.
Original entry on oeis.org
1, 12, 100, 392, 1554, 3486, 9690, 18942, 38610, 65268, 125116, 186870, 324646, 472546, 713354, 1003888, 1531908, 2000638, 2920970, 3780950
Offset: 1
A358303
Number of 4-sided regions in the Farey Diagram Farey(n,n), divided by 8.
Original entry on oeis.org
1, 13, 57, 231, 532, 1497, 2935, 6031, 10273, 19680, 29441, 51261, 74473, 112721, 159299, 242763, 317155, 462930, 598755
Offset: 1
A358305
Triangle read by rows: T(n,k) (n>=0, 0 <= k <= n) = number of decreasing lines defining the Farey diagram Farey(n,k) of order (n,k).
Original entry on oeis.org
0, 0, 2, 0, 5, 10, 0, 9, 19, 32, 0, 14, 27, 47, 66, 0, 20, 40, 68, 96, 134, 0, 27, 51, 85, 118, 167, 204, 0, 35, 68, 112, 156, 217, 267, 342, 0, 44, 82, 137, 187, 261, 318, 408, 482, 0, 54, 103, 166, 229, 317, 384, 490, 581, 692, 0, 65, 120, 196, 266, 366, 441, 564, 664, 794, 904
Offset: 0
The full array T(n,k), n >= 0, k>= 0, begins:
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
0, 2, 5, 9, 14, 20, 27, 35, 44, 54, 65, 77, 90, ...
0, 5, 10, 19, 27, 40, 51, 68, 82, 103, 120, 145, ...
0, 9, 19, 32, 47, 68, 85, 112, 137, 166, 196, 235, ...
0, 14, 27, 47, 66, 96, 118, 156, 187, 229, 266, ...
0, 20, 40, 68, 96, 134, 167, 217, 261, 317, 366, ...
0, 27, 51, 85, 118, 167, 204, 267, 318, 384, 441, ...
-
A005728 := proc(n) 1+add(numtheory[phi](i), i=1..n) ; end proc: # called F_n in the paper
Amn:=proc(m,n) local a,i,j; # A331781 or equally A333295. Diagonal is A018805.
a:=0; for i from 1 to m do for j from 1 to n do
if igcd(i,j)=1 then a:=a+1; fi; od: od: a; end;
DFD:=proc(m,n) local d,t1,u,v; global A005728, Amn;
t1:=0; for u from 1 to m do for v from 1 to n do
d:=igcd(u,v); if d>=1 then t1:=t1 + (u+v)*numtheory[phi](d)/d; fi; od: od:
t1; end;
for m from 0 to 8 do lprint([seq(DFD(m,n),n=0..20)]); od:
-
T[n_, k_] := Sum[d = GCD[u, v]; If[d >= 1, (u+v)*EulerPhi[d]/d, 0], {u, 1, n}, {v, 1, k}];
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 18 2023 *)
Original entry on oeis.org
0, 5, 10, 19, 27, 40, 51, 68, 82, 103, 120, 145, 165, 194, 217, 250, 276, 313, 342, 383, 415, 460, 495, 544, 582, 635, 676, 733, 777, 838, 885, 950, 1000, 1069, 1122, 1195, 1251, 1328, 1387, 1468, 1530, 1615, 1680, 1769, 1837, 1930, 2001, 2098, 2172, 2273, 2350, 2455, 2535, 2644, 2727, 2840, 2926, 3043, 3132, 3253, 3345
Offset: 0
Comments