A363528
Number of strict integer partitions of n with weighted sum divisible by reverse-weighted sum.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 3, 1, 2, 6, 2, 3, 9, 3, 4, 11, 4, 5, 16, 6, 8, 24, 8, 10, 31, 11, 14, 41, 18, 18, 59, 21, 27, 74, 30, 32, 100, 35, 43, 128, 54, 53, 173, 58, 78, 215, 81, 88, 294, 97, 123, 362, 150, 146, 469, 162, 221, 577
Offset: 1
The a(n) partitions for n = 1, 12, 15, 21, 24, 26:
(1) (12) (15) (21) (24) (26)
(9,2,1) (11,3,1) (15,5,1) (17,6,1) (11,8,4,2,1)
(9,3,2,1) (16,3,2) (18,4,2) (12,6,5,2,1)
(11,7,2,1) (12,9,2,1) (13,5,4,3,1)
(12,5,3,1) (13,7,3,1)
(10,5,3,2,1) (14,5,4,1)
(15,4,3,2)
(10,8,3,2,1)
(11,6,4,2,1)
A318283 gives weighted sum of reversed prime indices, row-sums of
A358136.
Cf.
A008284,
A053632,
A067538,
A222855,
A222970,
A358137,
A359754,
A359755,
A362558,
A362559,
A362560.
-
Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&Divisible[Total[Accumulate[#]],Total[Accumulate[Reverse[#]]]]&]],{n,30}]
A359757
Greatest positive integer whose weakly increasing prime indices have zero-based weighted sum (A359674) equal to n.
Original entry on oeis.org
4, 9, 25, 49, 121, 169, 289, 361, 529, 841, 961, 1369, 1681, 1849, 2209, 2809, 3481, 3721, 4489, 5041, 5329, 6241, 6889, 7921, 9409, 10201, 12167, 11449, 15341, 24389, 16399, 26071, 29791, 31117, 35557, 50653, 39401, 56129, 68921, 58867, 72283, 83521, 79007, 86903, 103823
Offset: 1
The terms together with their prime indices begin:
4: {1,1}
9: {2,2}
25: {3,3}
49: {4,4}
121: {5,5}
169: {6,6}
289: {7,7}
361: {8,8}
529: {9,9}
841: {10,10}
A053632 counts compositions by zero-based weighted sum.
A124757 = zero-based weighted sum of standard compositions, reverse
A231204.
-
nn=10;
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
wts[y_]:=Sum[(i-1)*y[[i]],{i,Length[y]}];
seq=Table[wts[prix[n]],{n,2^nn}];
Table[Position[seq,k][[-1,1]],{k,nn}]
-
a(n)={ my(recurse(r, k, m) = if(k==1, if(m>=r, prime(r)^2),
my(z=0); for(j=1, min(m, (r-k*(k-1)/2)\k), z=max(z, self()(r-k*j, k-1, j)*prime(j))); z));
vecmax(vector((sqrtint(8*n+1)-1)\2, k, recurse(n,k,n)));
} \\ Andrew Howroyd, Jan 21 2023
Comments