cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A363745 Number of integer partitions of n whose rounded-down mean is 2.

Original entry on oeis.org

0, 0, 1, 0, 2, 2, 3, 4, 10, 6, 16, 21, 24, 32, 58, 47, 85, 111, 119, 158, 248, 217, 341, 442, 461, 596, 867, 792, 1151, 1465, 1506, 1916, 2652, 2477, 3423, 4298, 4381, 5488, 7334, 6956, 9280, 11503, 11663, 14429, 18781, 17992, 23383, 28675, 28970, 35449, 45203
Offset: 0

Views

Author

Gus Wiseman, Jul 05 2023

Keywords

Examples

			The a(2) = 1 through a(10) = 16 partitions:
  (2)  .  (22)  (32)  (222)  (322)  (332)   (3222)  (3322)
          (31)  (41)  (321)  (331)  (422)   (3321)  (3331)
                      (411)  (421)  (431)   (4221)  (4222)
                             (511)  (521)   (4311)  (4321)
                                    (611)   (5211)  (4411)
                                    (2222)  (6111)  (5221)
                                    (3221)          (5311)
                                    (3311)          (6211)
                                    (4211)          (7111)
                                    (5111)          (22222)
                                                    (32221)
                                                    (33211)
                                                    (42211)
                                                    (43111)
                                                    (52111)
                                                    (61111)
		

Crossrefs

For 1 instead of 2 we have A025065, ranks A363949.
The high version is A026905 reduplicated, ranks A363950.
Column k = 2 of A363945.
These partitions have ranks A363954.
A008284 counts partitions by length, A058398 by mean.
A051293 counts subsets with integer mean, median A000975.
A067538 counts partitions with integer mean, strict A102627, ranks A316413.
A349156 counts partitions with non-integer mean, ranks A348551.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Floor[Mean[#]]==2&]],{n,0,30}]

A126594 Floor of the average of the prime factors of n with multiplicity.

Original entry on oeis.org

2, 3, 2, 5, 2, 7, 2, 3, 3, 11, 2, 13, 4, 4, 2, 17, 2, 19, 3, 5, 6, 23, 2, 5, 7, 3, 3, 29, 3, 31, 2, 7, 9, 6, 2, 37, 10, 8, 2, 41, 4, 43, 5, 3, 12, 47, 2, 7, 4, 10, 5, 53, 2, 8, 3, 11, 15, 59, 3, 61, 16, 4, 2, 9, 5, 67, 7, 13, 4, 71, 2, 73, 19, 4, 7, 9, 6, 79, 2, 3, 21, 83, 3, 11, 22, 16, 4, 89, 3, 10
Offset: 2

Views

Author

Cino Hilliard, Jan 06 2007

Keywords

Crossrefs

Cf. A067629 (rounding instead of flooring), A076690.
This is the floor of A123528/A123529.
Without multiplicity we have A363895.
For prime indices instead of factors we have A363943, triangle A363945.
Positions of first appearances are A364037.
The ceiling is A364156.
Positions of 2's are A364157, for prime indices A363949.
A051293 counts subsets with integer mean, median A000975.
A067538 counts partitions with integer mean, ranks A316413.
A078175 lists numbers with integer mean of prime factors.

Programs

  • Mathematica
    Table[Floor[(Plus@@Times@@@FactorInteger[n])/PrimeOmega[n]], {n, 2, 90}] (* Alonso del Arte, May 21 2012 *)
  • PARI
    avg(n) = { local(x,j,ln) for(x=2,n,a=ifactor(x); ln=length(a); print1(floor(sum(j=1,ln,a[j])/ln)",")) } ifactor(n) = \The vector of the prime factors of n with multiplicity. { local(f,j,k,flist); flist=[]; f=Vec(factor(n)); for(j=1,length(f[1]), for(k = 1,f[2][j],flist = concat(flist,f[1][j]) ); ); return(flist) }

Formula

a(p^n)=p, p prime, n >= 1. - Philippe Deléham, Nov 23 2008
a(n) = floor(A001414(n)/A001222(n)). - Philippe Deléham, Nov 24 2008

A363954 Numbers whose prime indices have low mean 2.

Original entry on oeis.org

3, 9, 10, 14, 15, 27, 28, 30, 42, 44, 45, 50, 52, 63, 66, 70, 75, 81, 84, 88, 90, 100, 104, 126, 132, 135, 136, 140, 150, 152, 156, 189, 196, 198, 204, 208, 210, 220, 225, 234, 243, 250, 252, 260, 264, 270, 272, 280, 294, 297, 300, 304, 308, 312, 315, 330, 350
Offset: 1

Views

Author

Gus Wiseman, Jul 05 2023

Keywords

Comments

Extending the terminology of A124944, the "low mean" of a multiset is obtained by taking the mean and rounding down.

Examples

			The terms together with their prime indices begin:
     3: {2}
     9: {2,2}
    10: {1,3}
    14: {1,4}
    15: {2,3}
    27: {2,2,2}
    28: {1,1,4}
    30: {1,2,3}
    42: {1,2,4}
    44: {1,1,5}
    45: {2,2,3}
    50: {1,3,3}
    52: {1,1,6}
    63: {2,2,4}
    66: {1,2,5}
    70: {1,3,4}
    75: {2,3,3}
    81: {2,2,2,2}
    84: {1,1,2,4}
    88: {1,1,1,5}
    90: {1,2,2,3}
   100: {1,1,3,3}
		

Crossrefs

Partitions of this type are counted by A363745.
Positions of 2's in A363943 (high A363944), triangle A363945 (high A363946).
For mean 1 we have A363949.
The high version is A363950, counted by A026905.
A112798 lists prime indices, length A001222, sum A056239.
A316413 ranks partitions with integer mean, counted by A067538.
A326567/A326568 gives mean of prime indices.
A363941 gives low median of prime indices, triangle A124943.
A363942 gives high median of prime indices, triangle A124944.
A363948 lists numbers whose prime indices have mean 1, counted by A363947.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Floor[Mean[prix[#]]]==2&]

A363489 Rounded mean of the multiset of prime indices of n.

Original entry on oeis.org

0, 1, 2, 1, 3, 2, 4, 1, 2, 2, 5, 1, 6, 2, 2, 1, 7, 2, 8, 2, 3, 3, 9, 1, 3, 4, 2, 2, 10, 2, 11, 1, 4, 4, 4, 2, 12, 4, 4, 2, 13, 2, 14, 2, 2, 5, 15, 1, 4, 2, 4, 3, 16, 2, 4, 2, 5, 6, 17, 2, 18, 6, 3, 1, 4, 3, 19, 3, 6, 3, 20, 1, 21, 6, 3, 3, 4, 3, 22, 1, 2, 7
Offset: 1

Views

Author

Gus Wiseman, Jul 07 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We use the "rounding half to even" rule, see link.

Examples

			The prime indices of 180 are {1,1,2,2,3}, with mean 9/5, which rounds to 2, so a(180) = 2.
		

Crossrefs

Positions of first appearances are 1 and A000040.
Before rounding we had A326567/A326568.
For rounded-down: A363943, triangle A363945.
For rounded-up: A363944, triangle A363946.
Positions of 1's are A363948, complement A364059.
The triangle for this statistic (rounded mean) is A364060.
For prime factors instead of indices we have A364061.
A088529/A088530 gives mean of prime signature A124010.
A112798 lists prime indices, length A001222, sum A056239.
A316413 ranks partitions with integer mean, counted by A067538.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[If[n==1,0,Round[Mean[prix[n]]]],{n,100}]

A364060 Triangle read by rows where T(n,k) is the number of integer partitions of n with rounded mean k.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 2, 2, 0, 1, 0, 2, 4, 0, 0, 1, 0, 2, 5, 3, 0, 0, 1, 0, 4, 7, 0, 3, 0, 0, 1, 0, 4, 8, 5, 4, 0, 0, 0, 1, 0, 4, 14, 7, 4, 0, 0, 0, 0, 1, 0, 7, 21, 8, 0, 5, 0, 0, 0, 0, 1, 0, 7, 22, 11, 10, 0, 5, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Gus Wiseman, Jul 07 2023

Keywords

Comments

We use the "rounding half to even" rule, see link.

Examples

			Triangle begins:
  1
  0  1
  0  1  1
  0  1  1  1
  0  2  2  0  1
  0  2  4  0  0  1
  0  2  5  3  0  0  1
  0  4  7  0  3  0  0  1
  0  4  8  5  4  0  0  0  1
  0  4 14  7  4  0  0  0  0  1
  0  7 21  8  0  5  0  0  0  0  1
  0  7 22 11 10  0  5  0  0  0  0  1
  0  7 36 15 12  0  6  0  0  0  0  0  1
  0 12 32 36 14  0  6  0  0  0  0  0  0  1
  0 12 53 23 23 16  0  7  0  0  0  0  0  0  1
  0 12 80 30 27 19  0  0  7  0  0  0  0  0  0  1
Row n = 7 counts the following partitions:
  .  (31111)    (511)   .  (61)  .  .  (7)
     (22111)    (421)      (52)
     (211111)   (4111)     (43)
     (1111111)  (331)
                (322)
                (3211)
                (2221)
		

Crossrefs

Row sums are A000041.
The rank statistic for this triangle is A363489.
The version for low mean is A363945, rank statistic A363943.
The version for high mean is A363946, rank statistic A363944.
Column k = 1 is A363947 (A026905 tripled).
A008284 counts partitions by length, A058398 by mean.
A026905 redoubled counts partitions with high mean 2, ranks A363950.
A051293 counts subsets with integer mean, median A000975.
A067538 counts partitions with integer mean, strict A102627, ranks A316413.
More triangles: A124943, A124944, A363952, A363953.

Programs

  • Mathematica
    Table[If[n==k==0,1,Length[Select[IntegerPartitions[n], Round[Mean[#]]==k&]]],{n,0,15},{k,0,n}]

A364157 Numbers whose rounded-down (floor) mean of prime factors (with multiplicity) is 2.

Original entry on oeis.org

2, 4, 6, 8, 12, 16, 18, 24, 32, 36, 40, 48, 54, 64, 72, 80, 96, 108, 120, 128, 144, 160, 162, 192, 216, 224, 240, 256, 288, 320, 324, 360, 384, 432, 448, 480, 486, 512, 576, 640, 648, 672, 720, 768, 800, 864, 896, 960, 972, 1024, 1080, 1152, 1280, 1296, 1344
Offset: 1

Views

Author

Gus Wiseman, Jul 18 2023

Keywords

Examples

			The terms together with their prime factors begin:
   2 = 2
   4 = 2*2
   6 = 2*3
   8 = 2*2*2
  12 = 2*2*3
  16 = 2*2*2*2
  18 = 2*3*3
  24 = 2*2*2*3
  32 = 2*2*2*2*2
  36 = 2*2*3*3
  40 = 2*2*2*5
  48 = 2*2*2*2*3
  54 = 2*3*3*3
  64 = 2*2*2*2*2*2
  72 = 2*2*2*3*3
  80 = 2*2*2*2*5
  96 = 2*2*2*2*2*3
		

Crossrefs

Without multiplicity we appear to have A007694.
Prime factors are listed by A027746, indices A112798.
Positions of 2's in A126594, positions of first appearances A364037.
For prime indices and ceiling we have A363950, counted by A026905.
For prime indices we have A363954 (or A363949), counted by A363745.
A078175 lists numbers with integer mean of prime factors.
A123528/A123529 gives mean of prime factors, indices A326567/A326568.
A316413 ranks partitions with integer mean, counted by A067538.
A363895 gives floor of mean of distinct prime factors.
A363943 gives floor of mean of prime indices, ceiling A363944.

Programs

  • Mathematica
    prifacs[n_]:=If[n==1,{},Flatten[ConstantArray@@@FactorInteger[n]]];
    Select[Range[100],Floor[Mean[prifacs[#]]]==2&]
Previous Showing 11-16 of 16 results.