cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A369179 Irregular triangle read by rows: row n lists the number of I characters for each of the distinct derivable strings in the MIU formal system that are n characters long.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 2, 4, 1, 1, 2, 1, 2, 2, 1, 2, 2, 2, 4, 1, 2, 2, 2, 4, 2, 4, 4, 4, 5, 1, 1, 2, 1, 2, 2, 1, 2, 2, 2, 4, 1, 2, 2, 2, 4, 2, 4, 4, 4, 5, 1, 2, 2, 2, 4, 2, 4, 4, 4, 5, 2, 4, 4, 4, 5, 4, 4, 5, 4, 5, 5
Offset: 2

Views

Author

Paolo Xausa, Jan 16 2024

Keywords

Comments

See A368946 for the description of the MIU formal system and A369173 for the triangle of the corresponding derivable strings.

Examples

			Triangle begins:
  [2] 1;
  [3] 1 1 2;
  [4] 1 1 2 1 2 2;
  [5] 1 1 2 1 2 2 1 2 2 2 4;
  [6] 1 1 2 1 2 2 1 2 2 2 4 1 2 2 2 4 2 4 4 4 5;
  ...
		

References

  • Douglas R. Hofstadter, Gödel, Escher, Bach: an Eternal Golden Braid, Basic Books, 1979, pp. 33-41 and pp. 261-262.

Crossrefs

Cf. A024495 (row lengths), A268643, A368946, A369173, A369174 (number of zeros).

Programs

  • Mathematica
    A369179row[n_] := Select[Map[Count[#, 1]&, Tuples[{0, 1}, n - 1]], !Divisible[#, 3]&]; Array[A369179row, 6, 2]

Formula

T(n,k) = A268643(A369173(n,k)).
T(n,k) = n - 1 - A369174(n,k).
T(n,k) mod 3 > 0.

A369412 Maximum length of a "normal" proof (see comments) for strings (theorems) in the MIU formal system that are n characters long.

Original entry on oeis.org

1, 4, 13, 11, 18, 16, 25, 23, 24, 22, 26, 24, 34, 32, 33, 31, 35, 33, 34, 32, 39, 37, 49
Offset: 2

Views

Author

Paolo Xausa, Jan 23 2024

Keywords

Comments

See A368946 for the description of the MIU formal system, A369410 for the triangle of the corresponding proof lengths and A369409 for the definition of "normal" proof.

References

  • Douglas R. Hofstadter, Gödel, Escher, Bach: an Eternal Golden Braid, Basic Books, 1979, pp. 33-41.

Crossrefs

Programs

  • Mathematica
    MIUDigitsW3[n_] := Select[Tuples[{0, 1}, n - 1], !Divisible[Count[#, 1], 3]&];
    MIUProofLineCount[t_] := Module[{c = Count[t, 0], ni}, ni = Length[t] + 2*c; While[ni > 1, If[OddQ[ni], ni = (ni+3)/2; c += 4, ni/=2; c++]]; c+1];
    Map[Max, Map[MIUProofLineCount, Array[MIUDigitsW3, 15, 2], {2}]]

Formula

a(n) = max_{k=1..A024495(n)} A369410(n,k).

A369413 Maximum number of symbols of a "normal" proof (see comments) for strings (theorems) in the MIU formal system that are n characters long.

Original entry on oeis.org

2, 13, 94, 75, 165, 139, 308, 269, 348, 299, 482, 423, 647, 581, 780, 701, 893, 807, 1064, 965, 1281, 1175, 1654
Offset: 2

Views

Author

Paolo Xausa, Jan 23 2024

Keywords

Comments

See A368946 for the description of the MIU formal system, A369411 for the triangle of the corresponding symbol lengths and A369409 for the definition of "normal" proof.

References

  • Douglas R. Hofstadter, Gödel, Escher, Bach: an Eternal Golden Braid, Basic Books, 1979, pp. 33-41.

Crossrefs

Programs

  • Mathematica
    MIUDigitsW3[n_] := Select[Tuples[{0, 1}, n - 1], !Divisible[Count[#, 1], 3]&];
    MIUProofSymbolCount[t_] := Module[{c = Length[t], nu = Count[t,0], ni}, ni = 2*nu+c; c += nu(nu+c+2); While[ni > 1, If[OddQ[ni], c += (7*ni+3)/2 + 13; ni = (ni+3)/2, c += ni/2 + 1; ni/=2]]; c+1];
    Map[Max, Map[MIUProofSymbolCount, Array[MIUDigitsW3, 15, 2], {2}]]

Formula

a(n) = max_{k=1..A024495(n)} A369411(n,k).

A369148 In the MIU formal system, total number (including duplicates) of strings up to n steps distant from the MI string.

Original entry on oeis.org

1, 3, 6, 12, 28, 88, 444, 3671, 47981, 976631, 29554002, 1326494644
Offset: 0

Views

Author

Paolo Xausa, Jan 14 2024

Keywords

Comments

See A368946 for the description of the MIU formal system.

References

  • Douglas R. Hofstadter, Gödel, Escher, Bach: an Eternal Golden Braid, Basic Books, 1979, pp. 33-41.

Crossrefs

Cf. A331536 (without duplicates), A368946, A369173 (all MIU strings).
Partial sums of A368947.

Programs

  • Mathematica
    MIUStepW3[s_] := Flatten[Map[{If[StringEndsQ[#, "1"], # <> "0", Nothing], # <> #, StringReplaceList[#, {"111" -> "0", "00" -> ""}]}&, s]];
    With[{rowmax = 9}, Accumulate[Map[Length, NestList[MIUStepW3, {"1"}, rowmax]]]]

Formula

a(n) >= A331536(n+1).
Previous Showing 11-14 of 14 results.