A372120
Numbers k such that the k-th composition in standard order is biquanimous.
Original entry on oeis.org
0, 3, 10, 11, 13, 14, 15, 36, 37, 38, 39, 41, 43, 44, 45, 46, 47, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 136, 137, 138, 139, 140, 141, 142, 143, 145, 147, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 162, 163, 165, 166, 167, 168, 169
Offset: 1
The terms and corresponding compositions begin:
0: ()
3: (1,1)
10: (2,2)
11: (2,1,1)
13: (1,2,1)
14: (1,1,2)
15: (1,1,1,1)
36: (3,3)
37: (3,2,1)
38: (3,1,2)
39: (3,1,1,1)
41: (2,3,1)
43: (2,2,1,1)
44: (2,1,3)
45: (2,1,2,1)
46: (2,1,1,2)
47: (2,1,1,1,1)
50: (1,3,2)
51: (1,3,1,1)
52: (1,2,3)
53: (1,2,2,1)
54: (1,2,1,2)
These compositions are counted by
A064914.
The unordered version (integer partitions) is
A357976, counted by
A002219.
A237258 (aerated) counts biquanimous strict partitions, ranks
A357854.
-
stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
Select[Range[0,100],MemberQ[Total/@Subsets[stc[#]], Total[stc[#]]/2]&]
A371732
Numbers n such that each binary index k (from row n of A048793) has the same sum of binary indices A029931(k).
Original entry on oeis.org
1, 2, 4, 8, 12, 16, 32, 64, 128, 144, 256, 288, 512, 576, 1024, 2048, 3072, 4096, 8192, 16384, 32768, 32800, 33024, 33056, 65536, 65600, 66048, 66112, 131072, 132096, 133120, 134144, 262144, 266240, 524288, 528384, 786432, 790528, 1048576, 1056768, 2097152
Offset: 1
The terms together with their binary expansions and binary indices begin:
1: 1 ~ {1}
2: 10 ~ {2}
4: 100 ~ {3}
8: 1000 ~ {4}
12: 1100 ~ {3,4}
16: 10000 ~ {5}
32: 100000 ~ {6}
64: 1000000 ~ {7}
128: 10000000 ~ {8}
144: 10010000 ~ {5,8}
256: 100000000 ~ {9}
288: 100100000 ~ {6,9}
512: 1000000000 ~ {10}
576: 1001000000 ~ {7,10}
1024: 10000000000 ~ {11}
2048: 100000000000 ~ {12}
3072: 110000000000 ~ {11,12}
4096: 1000000000000 ~ {13}
8192: 10000000000000 ~ {14}
16384: 100000000000000 ~ {15}
32768: 1000000000000000 ~ {16}
32800: 1000000000100000 ~ {6,16}
For prime instead of binary indices we have
A326534.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
A326031 gives weight of the set-system with BII-number n.
Cf.
A035470,
A038041,
A237258,
A320324,
A321453,
A321455,
A326518,
A336137,
A371783,
A371791,
A371796.
-
bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
Select[Range[1000],SameQ@@Total/@bix/@bix[#]&]
Comments