cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-24 of 24 results.

A375734 Indices of consecutive prime-powers (exclusive) differing by 1. Positions of 1's in A057820.

Original entry on oeis.org

1, 2, 3, 5, 6, 10, 17, 43, 70, 1077, 6635, 12369, 43578, 105102700
Offset: 1

Views

Author

Gus Wiseman, Sep 04 2024

Keywords

Comments

The corresponding prime-powers A246655(a(n)) are given by A006549.
From A006549, it is not known whether this sequence is infinite.

Examples

			The fifth prime-power is 7 and the sixth is 8, so 5 is in the sequence.
		

Crossrefs

For nonprime numbers (A002808) we have A375926, differences A373403.
Positions of 1's in A057820.
First differences are A373671.
For nonsquarefree numbers we have A375709, differences A373409.
For non-prime-powers we have A375713.
For non-perfect-powers we have A375740.
For squarefree numbers we have A375927, differences A373127.
Prime-powers:
- terms: A000961, complement A024619.
- differences: A057820.
- anti-runs: A373576, A120430, A006549, A373671
Non-prime-powers:
- terms: A361102
- differences: A375708
- anti-runs: A373679, A373575, A255346, A373672
A000040 lists all of the primes, differences A001223.
A025528 counts prime-powers up to n.

Programs

  • Mathematica
    Join@@Position[Differences[Select[Range[100],PrimePowerQ]],1]

Formula

Numbers k such that A246655(k+1) - A246655(k) = 1.
The inclusive version is a(n) + 1 shifted.

Extensions

a(14) from Amiram Eldar, Sep 24 2024

A375926 Numbers k such that A018252(k+1) = A018252(k) + 1. In other words, the k-th nonprime number is 1 less than the next.

Original entry on oeis.org

4, 5, 8, 9, 12, 13, 15, 16, 17, 18, 21, 22, 23, 24, 26, 27, 30, 31, 33, 34, 35, 36, 38, 39, 40, 41, 44, 45, 46, 47, 49, 50, 53, 54, 55, 56, 58, 59, 61, 62, 63, 64, 66, 67, 68, 69, 70, 71, 73, 74, 77, 78, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95
Offset: 1

Views

Author

Gus Wiseman, Sep 11 2024

Keywords

Examples

			The nonprime numbers are 1, 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, ... which increase by 1 after term 4, term 5, term 8, etc.
		

Crossrefs

The complement appears to be A014689, except the first term.
Positions of 1's in A065310 (see also A054546, A073783).
First differences are A373403 (except first).
The version for non-prime-powers is A375713, differences A373672.
The version for prime-powers is A375734, differences A373671.
The version for non-perfect-powers is A375740.
The version for composite numbers is A375929.
A000040 lists the prime numbers, differences A001223.
A018252 lists the nonprimes, exclusive A002808.
A046933 counts composite numbers between primes.

Programs

  • Mathematica
    Join@@Position[Differences[Select[Range[100],!PrimeQ[#]&]],1]
  • Python
    from sympy import primepi
    def A375926(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+bisection(lambda y:primepi(x+1+y))-1
        return bisection(f,n,n) # Chai Wah Wu, Sep 15 2024

A375928 Positions of adjacent non-prime-powers (exclusive) differing by more than 1.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 10, 11, 12, 13, 14, 18, 21, 22, 25, 26, 29, 34, 35, 37, 39, 42, 43, 48, 49, 50, 55, 62, 65, 66, 69, 70, 73, 80, 83, 84, 86, 91, 92, 101, 102, 107, 112, 115, 116, 119, 124, 125, 134, 135, 138, 139, 150, 161, 164, 165, 168, 173, 174, 175, 182
Offset: 1

Views

Author

Gus Wiseman, Sep 12 2024

Keywords

Examples

			The non-prime-powers (exclusive) are 1, 6, 10, 12, 14, 15, 18, 20, ... which increase by more than 1 after positions 1, 2, 3, 4, 6, 7, ...
		

Crossrefs

For prime-powers inclusive (A000961) we have A376163, differences A373672.
For nonprime numbers (A002808) we have A014689, differences A046933.
First differences are A110969.
The complement is A375713.
For non-perfect-powers we have A375714, complement A375740.
The complement for prime-powers (exclusive) is A375734, differences A373671.
The complement for nonprime numbers is A375926, differences A373403.
A000040 lists the prime numbers, differences A001223.
A000961 lists prime-powers (inclusive), differences A057820.
A007916 lists non-perfect-powers, differences A375706.
A024619 lists non-prime-powers (inclusive), differences A375735.
A246655 lists prime-powers (exclusive), differences A174965.
A361102 lists non-prime-powers (exclusive), differences A375708.

Programs

  • Mathematica
    ce=Select[Range[100],!PrimePowerQ[#]&];
    Select[Range[Length[ce]-1],!ce[[#+1]]==ce[[#]]+1&]

Formula

The inclusive version is a(n+1) - 1.

A376163 Positions of adjacent non-prime-powers (inclusive, so 1 is a prime-power) differing by 1.

Original entry on oeis.org

4, 7, 8, 14, 15, 16, 18, 19, 22, 23, 26, 27, 29, 30, 31, 32, 35, 37, 39, 40, 43, 44, 45, 46, 50, 51, 52, 53, 55, 56, 57, 58, 59, 60, 62, 63, 66, 67, 70, 71, 73, 74, 75, 76, 77, 78, 80, 81, 84, 86, 87, 88, 89, 92, 93, 94, 95, 96, 97, 98, 99, 102, 103, 104, 105
Offset: 1

Views

Author

Gus Wiseman, Sep 13 2024

Keywords

Examples

			The non-prime-powers (inclusive) are 6, 10, 12, 14, 15, 18, 20, 21, 22, 24, ... which increase by 1 after positions 4, 7, 8, ...
		

Crossrefs

For prime-powers inclusive (A000961) we have A375734, differences A373671.
For nonprime numbers (A002808) we have A375926, differences A373403.
For prime-powers exclusive (A246655) we have A375734(n+1) + 1.
First differences are A373672.
The exclusive version is a(n) - 1 = A375713.
Positions of 1's in A375735.
For non-perfect-powers we have A375740.
Prime-powers inclusive:
- terms: A000961
- differences: A057820
Non-prime-powers inclusive:
- terms: A361102
- differences: A375708
A000040 lists all of the primes, differences A001223.
A007916 lists non-perfect-powers, differences A375706.

Programs

  • Mathematica
    ce=Select[Range[2,100],!PrimePowerQ[#]&];
    Select[Range[Length[ce]-1],ce[[#+1]]==ce[[#]]+1&]
Previous Showing 21-24 of 24 results.